Quantitative Analyst

Lynott Partners
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Quantitative Analyst

Principal Quantitative Analyst - Sports Betting

Principal Quantitative Analyst - Sports Betting

Sports Trading Quantitative Analyst

Quant Developer (Java)

Senior Software Engineer - Fixed Income & Derivatives

About Lynott Partners


Founded in November 2023 by Sebastian Jory, Lynott Partners is a nascent absolute return manager backed by long-term private capital with $750m of AUM. The current team of four focuses on UK and European equities. The business has the ambition and infrastructure to grow strategies beyond the core successful European long/short offering to long-only, global and quant mandates.


Role & Responsibilities


The role will encompass managing and delivering on Lynott’s quant and automation goals, and providing a strong data science backbone for the team.


More specifically, work will include:


  • Aiding PMs and analysts in automating data science workflows
  • Developing quantitative equity strategies with a combination of own initiative, and consulting with the team
  • Working with LLM APIs to professionalise internal AI tooling and potentially build related strategies
  • More general data science tasks and analysing signals from human decision-making in the team


A core contribution of the employee will be to build a future-facing tech stack, and manage the automation and data science builds.


Requirements


Experience in a sell-side or buy-side quant position, highly proficient in chosen programming languages (likely Python), statistical or mathematical background, experience with machine learning algorithms and data science toolkits, and some experience working with LLM APIs.


Key Skills


  • Highly proficient programmer
  • Project manager and communicator
  • Systems thinker with cloud service experience (e.g. GCP)
  • Experience with market-related APIs (e.g. Factset, VisibleAlpha) and add-ins (Bloomberg)
  • Experience with spreadsheet workflows, particularly GoogleSheets
  • Finance experience with an understanding of markets, companies


Expectations


  • Highly driven & motivated to produce best-in-class quant output and automation
  • Strong work ethic and commitment to integrity, honesty and personal growth

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.