Python Engineer - Market Data- Tech-Driven Global Hedge Fund

Oxford Knight
London
1 year ago
Applications closed

Related Jobs

View all jobs

AI/MLOps Platform Engineer

AI/MLOps Platform Engineer

AI/MLOps Platform Engineer

Machine Learning Engineer - Financial Services

AI/MLOps Platform Engineer

Machine Learning Engineer

The Client

One of the world's largest hedge funds, this is an excellent opportunity to join one of the most prestigious technology teams in systematic trading in a wide-ranging development role. With a flat-structured, 'no-attitude' working environment, this is a great time to join as engineering is undergoing significant investment.

The Role

Looking for an experienced engineer to join the Market Data team as they extend the tick data capabilities and ensure existing market data sources are fit for purpose. This role offers the opportunity to contribute to the design of a low-latency, high throughput tick data platform and to build tools for visualisation & management of datasets at terabyte scale.

Their core systems run on Linux and most code is in Python3, including extensive use of numpy, scipy, pandas, scikit-learn, etc. Systems that require the highest data throughput are implemented in Java. New technologies, tools and libraries are constantly assessed, meaning you can shape the technology landscape and make an impact early on.

Requirements

  • Strong programming skills in Python
  • Previous experience of working with financial market data, especially tick data
  • Solid Linux platforms experience
  • Good knowledge of one or more relevant database technologies e.g. Oracle, MongoDB
  • Familiarity with a variety of programming styles (e.g. OO, functional)
  • Degree with high mathematical or computing content - Computer Science, Mathematics, Engineering, Physics
  • Proficient with a range of open-source frameworks and development tools e.g. NumPy /Pandas, Spark, Apache Kafka


Benefits

  • Competitive salary + generous bonuses
  • Extra perks including a personal development allowance and sponsorship
  • Central London office with a very smart, friendly tech team
  • Flat-structured, transparent and collaborative environment, 'no-attitude' culture
  • Regular social events, plus annual company trips and team offsites



Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.