National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Python Data Engineer

High 5 Games
united kingdom, united kingdom, united kingdom
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Senior Python Data Engineer - AI

Data Engineer - Reigate

Junior Data Engineer: Build the Infrastructure Behind Smart Cities

Senior Data Engineer | High Performing Systematic Hedge Fund

Senior Data Engineer

Position Overview:

As a Python Data Engineer at High 5 Casino, you will be responsible for designing, implementing, and maintaining data pipelines, databases and our in-house real-time player interaction software. You will collaborate with cross-functional teams to ensure seamless data integration, support data-driven decision-making, and contribute to the overall success of our gaming platforms.


Key Responsibilities:

  • Data Pipeline Development: Design, build, and maintain robust and scalable data pipelines for extracting, transforming, and loading (ETL) data from various sources.
  • Database Management: Manage and optimize databases, ensuring data integrity, security, and performance. Implement best practices for database design, indexing, and maintenance.
  • Data Integration: Collaborate with game providers, analysts and other stakeholders to integrate data sources, ensuring a unified and accurate view of data across the organization.
  • Performance Monitoring: Monitor and optimize the performance of data systems, identifying and addressing bottlenecks, ensuring scalability and minimizing costs.
  • Collaboration: Work closely with cross-functional teams, including data analysts and business intelligence teams, to understand data requirements and deliver solutions.
  • Streaming Systems: Design and implement real-time data processing systems to handle streaming data, ensuring low-latency and high-throughput data processing for real-time player interactions.
  • AI Integration:Collaborate with data scientists to deploy AI/ML models into production systems, ensuring proper integration, scalability, and performance. Enhance tools with AI-driven insights, predictive capabilities, and automated decision-making processes.
  • AI-Powered Solutions:Develop AI-powered features for liveops, customer support, and fraud detection tools, such as automated ticket responses, player behavior analysis, and anomaly detection.
  • AI Model Maintenance:Partner with data scientists to maintain, retrain, and fine-tune AI models based on new data and business requirements, ensuring continuous improvement and relevance.


Qualifications:

  • Bachelor’s degree in Computer Science, Information Technology, or a related field.
  • Proven experience as a Python Data Engineer or a similar role.
  • Strong proficiency in Python and experience with relevant frameworks and libraries.
  • Deep familiarity with SQL and query management practices.
  • Solid understanding of data modeling, database design, and data warehousing concepts.
  • Experience with ETL processes and tools.
  • Knowledge of cloud platforms (e.g., GCP, AWS, Azure) and their data services.
  • Familiarity with big data technologies (e.g., Hadoop, Spark) is a plus.
  • Understanding of AI tools like Gemini and ChatGPT is also a plus.
  • Excellent problem-solving and communication skills.
  • Ability to work independently and collaboratively in a fast-paced environment.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.