Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Python Data Engineer

High 5 Games
Leeds
6 months ago
Applications closed

Related Jobs

View all jobs

Python Data Engineer

Python Data Engineer

Python Data Engineer

Python, Data Engineer

Python Data Engineer - Onsite Bristol, Energy Trading

Remote Python Data Engineer — Real-Time ETL & Pipelines

Position Overview:

As a Python Data Engineer at High 5 Casino, you will be responsible for designing, implementing, and maintaining data pipelines, databases and our in-house real-time player interaction software. You will collaborate with cross-functional teams to ensure seamless data integration, support data-driven decision-making, and contribute to the overall success of our gaming platforms.


Key Responsibilities:

  • Data Pipeline Development: Design, build, and maintain robust and scalable data pipelines for extracting, transforming, and loading (ETL) data from various sources.
  • Database Management: Manage and optimize databases, ensuring data integrity, security, and performance. Implement best practices for database design, indexing, and maintenance.
  • Data Integration: Collaborate with game providers, analysts and other stakeholders to integrate data sources, ensuring a unified and accurate view of data across the organization.
  • Performance Monitoring: Monitor and optimize the performance of data systems, identifying and addressing bottlenecks, ensuring scalability and minimizing costs.
  • Collaboration: Work closely with cross-functional teams, including data analysts and business intelligence teams, to understand data requirements and deliver solutions.
  • Streaming Systems: Design and implement real-time data processing systems to handle streaming data, ensuring low-latency and high-throughput data processing for real-time player interactions.
  • AI Integration:Collaborate with data scientists to deploy AI/ML models into production systems, ensuring proper integration, scalability, and performance. Enhance tools with AI-driven insights, predictive capabilities, and automated decision-making processes.
  • AI-Powered Solutions:Develop AI-powered features for liveops, customer support, and fraud detection tools, such as automated ticket responses, player behavior analysis, and anomaly detection.
  • AI Model Maintenance:Partner with data scientists to maintain, retrain, and fine-tune AI models based on new data and business requirements, ensuring continuous improvement and relevance.


Qualifications:

  • Bachelor’s degree in Computer Science, Information Technology, or a related field.
  • Proven experience as a Python Data Engineer or a similar role.
  • Strong proficiency in Python and experience with relevant frameworks and libraries.
  • Deep familiarity with SQL and query management practices.
  • Solid understanding of data modeling, database design, and data warehousing concepts.
  • Experience with ETL processes and tools.
  • Knowledge of cloud platforms (e.g., GCP, AWS, Azure) and their data services.
  • Familiarity with big data technologies (e.g., Hadoop, Spark) is a plus.
  • Understanding of AI tools like Gemini and ChatGPT is also a plus.
  • Excellent problem-solving and communication skills.
  • Ability to work independently and collaboratively in a fast-paced environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.