Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Python Data Engineer

High 5 Games
Leeds
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Data Scientist - Reigate

Data Scientist - Reigate...

Data Scientist

[Only 24h Left] Data Scientist - Reigate...

Principal, AI Data Scientist (Remote)

Position Overview:

As a Python Data Engineer at High 5 Casino, you will be responsible for designing, implementing, and maintaining data pipelines, databases and our in-house real-time player interaction software. You will collaborate with cross-functional teams to ensure seamless data integration, support data-driven decision-making, and contribute to the overall success of our gaming platforms.


Key Responsibilities:

  • Data Pipeline Development: Design, build, and maintain robust and scalable data pipelines for extracting, transforming, and loading (ETL) data from various sources.
  • Database Management: Manage and optimize databases, ensuring data integrity, security, and performance. Implement best practices for database design, indexing, and maintenance.
  • Data Integration: Collaborate with game providers, analysts and other stakeholders to integrate data sources, ensuring a unified and accurate view of data across the organization.
  • Performance Monitoring: Monitor and optimize the performance of data systems, identifying and addressing bottlenecks, ensuring scalability and minimizing costs.
  • Collaboration: Work closely with cross-functional teams, including data analysts and business intelligence teams, to understand data requirements and deliver solutions.
  • Streaming Systems: Design and implement real-time data processing systems to handle streaming data, ensuring low-latency and high-throughput data processing for real-time player interactions.
  • AI Integration:Collaborate with data scientists to deploy AI/ML models into production systems, ensuring proper integration, scalability, and performance. Enhance tools with AI-driven insights, predictive capabilities, and automated decision-making processes.
  • AI-Powered Solutions:Develop AI-powered features for liveops, customer support, and fraud detection tools, such as automated ticket responses, player behavior analysis, and anomaly detection.
  • AI Model Maintenance:Partner with data scientists to maintain, retrain, and fine-tune AI models based on new data and business requirements, ensuring continuous improvement and relevance.


Qualifications:

  • Bachelor’s degree in Computer Science, Information Technology, or a related field.
  • Proven experience as a Python Data Engineer or a similar role.
  • Strong proficiency in Python and experience with relevant frameworks and libraries.
  • Deep familiarity with SQL and query management practices.
  • Solid understanding of data modeling, database design, and data warehousing concepts.
  • Experience with ETL processes and tools.
  • Knowledge of cloud platforms (e.g., GCP, AWS, Azure) and their data services.
  • Familiarity with big data technologies (e.g., Hadoop, Spark) is a plus.
  • Understanding of AI tools like Gemini and ChatGPT is also a plus.
  • Excellent problem-solving and communication skills.
  • Ability to work independently and collaboratively in a fast-paced environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.