Program manager - Data Analyst

N Consulting Ltd
england, england, united kingdom
10 months ago
Applications closed

Related Jobs

View all jobs

Technical Program Manager - Machine Learning - New York

Technical Program Manager - Machine Learning - New York

Data Analyst

Data Analyst Placement Programme

Data Analyst Placement Programme

Data Analyst Placement Programme

Role : Project Manager with Data Analyst

Location : Northampton

Work Mode : Hybrid (twice in a week from office)

 

Job Description:

 
We are seeking a Project Manager with hands-on Data Analysis experience to lead and deliver data-driven projects. This role requires a unique blend of project management expertise and technical proficiency in data analytics. You will work closely with cross-functional teams to deliver actionable insights, ensuring projects meet business objectives and timelines.

 

Key Responsibilities:

 

Project Management:

 

Plan, execute, and monitor data analytics projects from inception to completion.

Define project scope, objectives, timelines, deliverables, and resource requirements.

Collaborate with stakeholders to gather requirements, align expectations, and ensure successful project delivery.

Manage project risks, issues, and dependencies while ensuring quality and adherence to deadlines.

Document project progress, deliver regular status reports, and facilitate communication across teams.

Data Analytics:

Perform hands-on data extraction, transformation, and analysis using SQL, Python, Excel, or other analytics tools.

Interpret complex data sets to identify trends, patterns, and actionable insights.

Design and maintain dashboards and reports using BI tools (e.g., Power BI, Tableau, or similar).

Validate data quality, accuracy, and integrity throughout the analysis process.

Support decision-making by providing analytical insights and data-driven recommendations.

 

Required Skills & Qualifications:

 

Project Management:

Proven experience (3+ years) managing data analytics or data-related projects.

Strong understanding of project management methodologies (Agile, Scrum, Waterfall).

Experience in stakeholder management and leading cross-functional teams.

Data Analytics:

Hands-on experience with SQL, Python, or other data analysis languages.

Proficiency in data visualization tools (Power BI, Tableau, or similar).

Strong analytical and problem-solving skills with the ability to translate business needs into technical requirements.

General:

Excellent communication and interpersonal skills.

Ability to manage multiple projects simultaneously and prioritize effectively.

Bachelor's degree in Data Science, Computer Science, Business, or a related field (or equivalent experience).

PMP, PRINCE2, or Agile certifications (preferred but not required).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.