Product Manager - AI

NetMind.AI
London
1 year ago
Applications closed

Related Jobs

View all jobs

Product Manager - Machine Learning

Product Manager - Machine Learning

Data Engineering Lead

Machine Learning Engineer

AI Engineer / Data Scientist - Production ML & OCR

Data Analyst - Drive Real Estate Insights

At NetMind.ai, we’re building the next-generation AI/ML platform powered by a global decentralized GPU infrastructure. Our mission is to deliver the simplest and most accessible generative AI solutions on the market and democratize access to AI technology globally. Our AI services range from inference model APIs, training and fine-tuning, GPU clusters, agentic workflows, to AI consulting—empowering organizations of all sizes and AI developers to seamlessly adopt AI in diverse industries. If you’re passionate about building 0-to-1 AI products, thrive in fast-moving environments, and can bridge deep technical expertise with customer-driven innovation, join us as we shape the future of decentralized AI computing.


Responsibilities

  • You are the primary driver for identifying significant near and long-term opportunities in a large product area, and driving product vision, strategies and roadmaps, ensuring alignment with company goals and the rapidly evolving AI landscape.
  • Own the end-to-end customer experience for users building AI-powered applications and using AI services, proactively identifying and addressing customer pain points to increase adoption.
  • Work closely with cross-functional teams to drive product vision, define product requirements, coordinate resources from other groups (design, legal, etc.), and guide the team through key milestones.
  • Stay updated on the latest AI products, trends, technologies, and competitive landscape, and use this knowledge to inform product roadmaps and decision-making.
  • Conduct customer interviews, market research, and data analysis to define and validate product success metrics, while tracking adoption, retention, and performance to drive data-driven improvements and optimizations.
  • Develop strategies for product launches, customer onboarding, and marketing campaigns in collaboration with leadership, marketing, and business development teams.
  • Manage and build partnerships with AI model providers, computing resource providers, and other innovators in the GenAI ecosystem to enhance the platform.


Minimum Qualifications

  • 2+ years of product management or related industry experience.
  • Bachelor's degree in Computer Science, Engineering, Information Systems, Analytics, Mathematics, Physics, Applied Sciences, or a related field.
  • Skilled in full product lifecycle management, from ideation to launch, with experience integrating customer feedback into product requirements, driving prioritization, and managing pre/post-launch execution.
  • Good technical understanding of machine learning, large language models, model training, inference, and launching AI experiences.
  • Good understanding of cloud infrastructure, services, and architecture, with hands-on experience in cloud product development and deployment.
  • Experience working in a technical environment with a broad, cross-functional team to drive product vision, define product requirements, coordinate resources from other groups (design, marketing, etc.), and guide the team through key milestones.
  • Experience gathering requirements across diverse areas and users, and converting and developing them into a product solution.
  • Proven communication skills with experience delivering technical presentations.
  • Experience analyzing complex, large-scale data sets and making decisions based on data.


Preferred Qualifications

  • Proven experience leveraging ML/AI to build large-scale consumer products from 0 to 1.
  • Strong understanding of Generative AI technologies, including LLMs, RAG, agentic workflows, etc.
  • Master’s degree in AI/ML, Computer Science, or a related field.
  • Hands-on knowledge of MLOps workflows, model lifecycle management, and scalable inference.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.