Product Manager - AI

NetMind.AI
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Analyst (Cars Data Science & Analytics) - Manchester, UK

Machine Learning Engineer

Data Analyst

Data Scientist - Optimisation

SAP Master Data Analyst

Lead Data Scientist

At NetMind.ai, we’re building the next-generation AI/ML platform powered by a global decentralized GPU infrastructure. Our mission is to deliver the simplest and most accessible generative AI solutions on the market and democratize access to AI technology globally. Our AI services range from inference model APIs, training and fine-tuning, GPU clusters, agentic workflows, to AI consulting—empowering organizations of all sizes and AI developers to seamlessly adopt AI in diverse industries. If you’re passionate about building 0-to-1 AI products, thrive in fast-moving environments, and can bridge deep technical expertise with customer-driven innovation, join us as we shape the future of decentralized AI computing.


Responsibilities

  • You are the primary driver for identifying significant near and long-term opportunities in a large product area, and driving product vision, strategies and roadmaps, ensuring alignment with company goals and the rapidly evolving AI landscape.
  • Own the end-to-end customer experience for users building AI-powered applications and using AI services, proactively identifying and addressing customer pain points to increase adoption.
  • Work closely with cross-functional teams to drive product vision, define product requirements, coordinate resources from other groups (design, legal, etc.), and guide the team through key milestones.
  • Stay updated on the latest AI products, trends, technologies, and competitive landscape, and use this knowledge to inform product roadmaps and decision-making.
  • Conduct customer interviews, market research, and data analysis to define and validate product success metrics, while tracking adoption, retention, and performance to drive data-driven improvements and optimizations.
  • Develop strategies for product launches, customer onboarding, and marketing campaigns in collaboration with leadership, marketing, and business development teams.
  • Manage and build partnerships with AI model providers, computing resource providers, and other innovators in the GenAI ecosystem to enhance the platform.


Minimum Qualifications

  • 2+ years of product management or related industry experience.
  • Bachelor's degree in Computer Science, Engineering, Information Systems, Analytics, Mathematics, Physics, Applied Sciences, or a related field.
  • Skilled in full product lifecycle management, from ideation to launch, with experience integrating customer feedback into product requirements, driving prioritization, and managing pre/post-launch execution.
  • Good technical understanding of machine learning, large language models, model training, inference, and launching AI experiences.
  • Good understanding of cloud infrastructure, services, and architecture, with hands-on experience in cloud product development and deployment.
  • Experience working in a technical environment with a broad, cross-functional team to drive product vision, define product requirements, coordinate resources from other groups (design, marketing, etc.), and guide the team through key milestones.
  • Experience gathering requirements across diverse areas and users, and converting and developing them into a product solution.
  • Proven communication skills with experience delivering technical presentations.
  • Experience analyzing complex, large-scale data sets and making decisions based on data.


Preferred Qualifications

  • Proven experience leveraging ML/AI to build large-scale consumer products from 0 to 1.
  • Strong understanding of Generative AI technologies, including LLMs, RAG, agentic workflows, etc.
  • Master’s degree in AI/ML, Computer Science, or a related field.
  • Hands-on knowledge of MLOps workflows, model lifecycle management, and scalable inference.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.