Principal Security Data Analyst

Oracle
Leeds
10 months ago
Applications closed

Related Jobs

View all jobs

Test and Measurement Data Analyst

Principal Data Engineer (Azure, PySpark, Databricks)

Junior Cloud Data Engineer

Principal Data Engineer

Data Engineer - AI Practice Team

Principal Data Scientist

Oracle’s Software Assurance organization has the mission is to make application security and software assurance, at scale, a reality. We are a diverse and inclusive team of architects, researchers, and engineers, combining our unique perspectives and expertise to create secure and innovative solutions to complex challenges. With the resources of a large enterprise and the agility of a start-up, we are working on a greenfield software assurance project.


Work You’ll Do

We are seeking a Security Data Analyst to join our team. This role will combine data analysis, security research, and development skills where you will be responsible for designing, developing a platform capable of analyzing large datasets for security and compliance requirements. You will leverage your expertise in cybersecurity to proactively identify and address emerging threats, ensuring that secure coding practices are seamlessly integrated into every stage of development.


What You’ll Bring

  • Bachelor’s degree in computer science, Engineering, or a related field (or equivalent work experience).
  • 5+ years of experience in software/platform development/engineering from front end (web), mobile, back end, ad tech, or analytics dataflows backgrounds.
  • Extensive experience in dataflows, or similar roles in data management with proven experience building automated and scalable platforms for data-intensive applications.
  • Experience with navigating and handling large data sets and the ability to design and implement scalable and maintainable systems
  • Strong background in API development and associated architectural patterns such as REST or gRPC
  • Programming experience in Python, Go, Java, or similar.
  • Experience with data science concepts such as data preparation, exploration, modelling and the ability to apply this process when handling structured or unstructured data
  • Confident with using common data science tooling such as Jupyter notebooks, pandas, matplotlib, seaborn, numpy
  • API testing and security tools: Postman, Burp Suite, OWASP ZAP, etc.
  • Strong knowledge of database management systems (DBMS) such as MySQL
  • Hands-on experience with security and compliance frameworks and standards.
  • Knowledge of performance optimization techniques for mobile applications, including memory, CPU and network efficiency.
  • Excellent problem-solving and analytical skills.
  • Strong collaboration and communication skills, with the ability to work in cross functional teams and explain complex technical concepts to non-technical stakeholders.


Nice to Have:

  • Experience with OCI cloud-based services
  • Experience with machine learning or AI in security applications.
  • Experience in Agile methodologies and using project management tools like JIRA and confluence.
  • Knowledge of Software Assurance programs

Career Level - IC5


Responsibilities:

  • Architect and develop a secure, high-performance platform to ingest, parse, and analyze large volumes of API data stored in a MySQL database.
  • Work closely with internal and client teams to analyze, define and implement data rules and data flows, translating these into an auditable tool.
  • Scope and execute threat analysis to research, evaluate, track, and manage information security threats and vulnerabilities in data flows.
  • Ensure the tooling is secure by collaborating with architects and security teams to implement best practices for compliance, data privacy, and protection, while integrating tools and frameworks to assess APIs against OWASP and other relevant security standards (NIST, ISO-27001, PCI-DSS, HIPAA, FedRAMP)
  • Automate security and compliance controls into the platform for continuous monitoring and reporting.
  • Execute MySQL queries to ensure data integrity and consistency
  • Create intuitive dashboards and reports for stakeholders.
  • Create tools to help engineering teams identify security-related weaknesses
  • Stay up to date with the latest trends and technologies, contributing to ongoing improvements of platform architecture and best practices.
  • Maintain clear, comprehensive documentation on the platform architecture, services, and technical decisions to support internal teams and future development.
  • Mentor junior engineers and provide technical guidance.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.