Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Product Designer AI Specialist

Datasite
united kingdom, emea
1 year ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist - AI

Data Engineer

Principal Data Engineer

Principal Data Scientist - Industry Solutions Engineering

Principal Data Engineer

Machine Learning Engineer - Autonomy

Job Description:

We are looking for an experiencedAIProductDesignerto join our distributed team, building solutionsthat truly resonate with ourglobalcustomerbase.As a key contributor, you will be detail-oriented, but also capable of seeing the bigger picture. This is an opportunity to innovate in a complex space and will suit someone with a passion forProduct Led Growth (PLG),experimentation,evidence-based decision-makingand building greatuserexperiences.You will work alongside a dedicated Product Managerwith a cross-functional teamincludingAI/ML scientists and engineersto leadGenAIinitiatives across theDatasiteplatform.

Responsibilities:

  • UX Design:Lead and execute design projects from concept through completion, ensuringhigh standardsof design quality and user experience.Workwith product teams to understand user needs and business goals, translating complex requirements into clear, customer-centric design solutions.

  • Strategy:Drive theGenAIdesign vision and strategy across the platform, advocating for user-centered design practices and ensuring design consistency and coherence throughout all product touch points.

  • Leadership:Elevate the design team by providingGenAIguidance on best practices, design processes, and innovative approaches.

  • Trust:Maintainand develop customer trust while enhancing the usability and functionality of AI-powered features.

  • User Research:Conductresearch at all stages of the product lifecycle, from early strategic discovery through tousability testing and gatheringuser feedback to continuously improve the product experience.

  • Product Led Growth (PLG):Implement andchampionProduct Led Growth strategies, fostering a user-centric approach that empowers users to discover, adopt, and derive value from the product independently.

  • Cross-Functional Collaboration:Leadand work closely withacross-functional teamthrough activeparticipationin stand-ups and other Agile ceremonies,fostering collaboration and ensuring alignmentrequiredto deliver successful product outcomes.

  • Security & Compliance:Maintaina security-first mindset in the product development process, ensuring robust safeguards, data protection, and compliance with legislation and standards.

  • Market Analysis:Perform research to stay informed about industry trends, emerging technologies, and competitors, using these insights to keep our products competitiveand at the forefront of innovation.

Requirements:

  • 8+ years' experience as aUX/Product Designer

  • Proven experienceresearching,designing, anditerating post-launch onGenAIproductsor features(Experience with AI Search preferred)

  • In-depth knowledge of how generative AI models work, including Natural Language Processing (NLP), image generation, and other AI-driven designtools

  • Familiarity with AI tools and platforms such asOpenAI'sGPT, DALL-E,Midjourney, or other generative AI frameworks

  • Understandingofthe ethical implications of AI, including issues of bias, privacy, and transparency

  • Skills in identifying and mitigating biases in AI models to ensure fair and inclusive userexperiences

  • Experience with APIs and integrating AI services into digitalproduct

  • History of working with and contributing to a Design System

  • Solid understanding of UX Laws and visual design principles

  • A passion for speed, quality, and evidence-based learning and decision-making

  • Demonstrated experience with enterprise products in complex domains such as financial services,healthcare, andeducation

  • Technical aptitude and attention to detail,while always keepingthe bigger picturein sight

  • Exceptional strategic thinking abilities, plusa demonstratedcapacityto convert strategy into actionabletacticalplans

  • Ability toanalyzedata to understand userbehaviorand improve AImodels

  • Knowledge of statistical analysis and data visualization tools

  • Strong problem-solving skills, with a results-oriented approach to overcoming challenges

  • Strong interpersonal, communication, and presentation skills, with the ability toevangelize,influence, engage, and collaborate effectively across various teams and levels of the organization, as well as customers andpartners

  • A demonstrated ability to thrive in a fast-paced, dynamic environment and manage multiple prioritieseffectively

  • Experience working with cross-functional Agile teams in remote / hybridenvironments

  • Experience with software such as Figma, Dovetail,Pendo, and other BI (Business Intelligence) tools, as well as productivity / collaboration tools such asProductboard, Monday, JIRA, Slack, Mural, Office 365 etc.

  • Self-starter and quick learner

  • A passion for speed,quality,and evidence-based learningand decision-making

As a global organization, Datasite knows that diverse perspectives are essential to our success. We’re committed to maintaining a diverse workforce to serve our customers around the world. Datasite is an equal opportunity employer (EEO) and furthers the principles of EEO through Affirmative Action.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.