Principal / Manager – Consulting

NielsenIQ
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer - AI Practice Team

Principal Consultant - Data Engineering Lead

Vascular Data Analyst and Clinical Governance Coordinator

Vascular Data Analyst and Clinical Governance Coordinator

Lead Data Engineer & Consultant (Hybrid/Remote)

Senior MLOps Engineer

As a Consultant in the Analytical Consulting team, you will be responsible for the client servicing team to deliver analytical and consultative projects to some of the largest companies with high quality standards and timelines agreed with clients.

RESPONSIBILITIES

  • Provide timely analytic solutions and benefits to client business issues/opportunities by developing strategic initiatives for clients.
  • Oversee the management and conduct of assigned analytic projects including preparation, approval, and delivery of proposals, reports, and presentations.
  • Build and maintain ongoing relationships with identified key persons within client organizations.
  • Ensure client service standards are implemented and enhanced as client expectations continue to evolve and change in the marketplace.
  • Lead the analytic servicing team with the primary responsibility of expanding our scope of influence with clients across a wider range of products and with greater depth of involvement.
  • Work with the modeling team to drive modelers to create meaningful and actionable model outputs.

Qualifications

  • 5 to 7 years of experience in FMCG/Service/Retail industry.
  • Excellent analytical skills and understanding of statistical modeling.
  • Strong communication and project management skills.

Education Qualifications

  • BA/BS in a numerate discipline required (MBA desirable).

Additional Information

  • Flexible working environment.
  • Volunteer time off.

About NIQ

NIQ is the world’s leading consumer intelligence company, delivering the most complete understanding of consumer buying behavior and revealing new pathways to growth. In 2023, NIQ combined with GfK, bringing together the two industry leaders with unparalleled global reach. With a holistic retail read and the most comprehensive consumer insights—delivered with advanced analytics through state-of-the-art platforms—NIQ delivers the Full View. NIQ is an Advent International portfolio company with operations in 100+ markets, covering more than 90% of the world’s population.

For more information, visit NIQ.com.

Our Commitment to Diversity, Equity, and Inclusion

NIQ is committed to reflecting the diversity of the clients, communities, and markets we measure within our own workforce. We exist to count everyone and are on a mission to systematically embed inclusion and diversity into all aspects of our workforce, measurement, and products. We enthusiastically invite candidates who share that mission to join us. We are proud to be an Equal Opportunity/Affirmative Action Employer, making decisions without regard to race, color, religion, gender, gender identity or expression, sexual orientation, national origin, genetics, disability status, age, marital status, protected veteran status, or any other protected class. Our global non-discrimination policy covers these protected classes in every market in which we do business worldwide. Learn more about how we are driving diversity and inclusion in everything we do by visiting the NIQ News Center:Diversity & Inclusion.

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.