Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Data Scientist London

Mesh-AI Limited
London
9 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist - AI

We’re a transformation consultancy and we exist to reimagine how enterprises operate, making data and AI their competitive advantage. We turn enterprises into data-driven and AI enabled organisations, unleashing business growth and accelerating outcomes.

We have big ambitions for the future. Since we launched October 2021, we’ve grown to over 100 people and are working with some of the UK’s largest enterprises to deliver real transformation.

We’re building an open, collaborative culture and we are always on the lookout for top talent to join us in our next phase of growth. If you’re interested in working on business-defining engagements with some of the brightest minds in the industry, apply below!

The Opportunity

You’ll not be an island here. We’re going to surround you with industry leading talent who are working towards a shared goal of using AI/ML to deliver maximum business value to our clients. We’re going to be bringing products & solutions to life - your work will see the light of day.

Responsibilities

  • Own AI/ML domain as part of a cross functional team
  • Solve the business problems not just the technical ones - understand our customers, the people & problems they face and design solutions that help them
  • Designing and building data science and machine learning systems that have measurable impact for clients with the use of cutting edge technologies
  • Bridging the gap between business and technology; comfortably communicating & managing expectations across customer stakeholders, technology & our own engineering teams.
  • Leading discovery sessions and workshops with customers
  • Engage with your cross-functional squad across discovery & delivery phases of engagements; advisory, design & implementation
  • Contribute to internal initiatives such as; blogs, thought leadership, leading technical forums

Requirements

  • Substantial experience with Python and relevant libraries (e.g. Pandas, Numpy, Scikit Learn, PyTorch, Tensorflow)
  • Experience driving ML & data science solutions into production
  • You can put the numbers into a business perspective - you’re a data storyteller
  • You are comfortable getting hands-on dealing with the customer and their problems
  • Experience with cloud computing ecosystems (e.g. AWS, Azure, GCP)
  • Exposure to & appreciation of software engineering best practices applied to data, e.g., version control, CI/CD
  • Outstanding general purpose skills in AI/ML, and a proven record of applying them to solve business problems
  • Worked in a technical leadership capacity; ideally in a consulting environment
  • Impact driven, work proud and eager to have a real positive influence on Mesh-AI, our customers, and your team

Nice to Have

  • NLP, LLMs, GenAI, time series forecasting, image recognition or deep learning
  • PySpark, OpenCV, spaCy or DVC
  • Exposure to MLOps

Want to know more? Get in touch with . Otherwise apply here.

Apply for this job

* indicates a required field

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.