Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Data Scientist (Freelance)

RAPP
London
11 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Are you passionate about using data to transform the future of marketing? Do you thrive in dynamic environments where every project brings new challenges and opportunities? If so, we want you to join our world-class Data Science team at RAPP! Led by George Cushen, our team of 8 talented data scientists is at the forefront of leveraging AI to reinvent marketing for some of the worlds biggest brands, including Virgin Media O2 and Mercedes.

As part of the Omnicom Precision Marketing Group (OPMG), we combine data-driven insights with cutting-edge technology to deliver unparalleled marketing solutions across a variety of industries. We’re not just looking for a data scientist; we’re looking for someone who’s eager to dive into diverse projects, collaborate with brilliant minds, and push the boundaries of what’s possible.

What You’ll Do:

  • Innovate and Optimise:Design, build, and implement cutting-edge predictive models such as campaign forecasting engines, causal AI campaign modelling, pricing elasticity models, and recommender engines that drive media performance, personalise customer experiences, and optimise revenue for luxury fashion brands.
  • Uncover Insights:Use predictive and prescriptive techniques to analyse data, uncover trends, and deliver actionable recommendations that make a real impact on our clients businesses.
  • Build and Prototype:Develop data solutions, tools, and prototypes that showcase our capabilities and empower clients with self-service frameworks.
  • Communicate Effectively:Present your findings and recommendations in a way that’s both clear and engaging, whether you’re talking to a technical team or a non-technical client.
  • Collaborate and Document:Work closely with cross-functional teams in a fast-paced, entrepreneurial environment and ensure your processes are documented for scalability.

What You’ll Bring:

Must-Have:

  • A BSc in Computer Science, Mathematics, Physics, or a related field.
  • Extensive experience in building machine learning models for tasks like recommendations, segmentation, forecasting, and optimising marketing spend.
  • Proficiency in Python, SQL, Bash, and Git, with hands-on experience in tools like Jupyter notebooks, Pandas, PyTorch, and more.
  • Experience with A/B testing and other experimentation methods to validate model performance and business impact.
  • Experience with cloud platforms (AWS, Databricks, Snowflake), containerisation tools (Docker, Kubernetes), and CI/CD pipelines.
  • Strong problem-solving skills, creativity, and attention to detail.
  • Excellent communication skills with the ability to distil complex analyses into insights that clients can easily understand and act on.

Nice-to-Have:

  • Advanced degrees (MSc or PhD) in a relevant field.
  • A deep understanding of the marketing ecosystem, including media measurement solutions like media mix modelling.
  • Experience with NLP, Computer Vision, GenAI, CausalAI, GraphAI, and advanced techniques.
  • Familiarity with versioning models (MLFlow), API design (FastAPI), and building custom dashboards (Dash).

Why You’ll Love It Here:

  • Variety and Challenge:No two projects are the same. You’ll work across multiple industries, constantly learning and growing as you tackle new problems.
  • Innovation at the Core:We’re at the cutting edge of AI and marketing, and you’ll have the freedom to experiment, innovate, and shape the future.
  • Collaborative and Fun Culture:We’re a tight-knit team that values collaboration, creativity, and having fun while doing great work.
  • Global Impact:As part of Omnicom, you’ll be contributing to projects that have a global impact, working with some of the biggest brands in the world.

If you’re excited by the prospect of joining a fast-paced, innovative environment where you can make a tangible difference, we’d love to hear from you!

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.