National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Principal Data Scientist

Oracle
Reading
1 week ago
Create job alert

Oracle’s Software Assurance organization has the mission to make application security and software assurance, at scale, a reality. We are an inclusive and diverse team of high caliber data science and ML application researchers and engineers, distributed globally, who thrive on new challenges. We are seeking an experienced Machine Learning Engineer or Data Scientist with technical expertise in Recommender Systems, Natural Language Processing (NLP), and Computer Vision, to join our growing team of multidisciplinary data science and ML experts. As a Principal Data Scientist, you will work closely with the technical, engineering and research teams on innovative, strategic projects including advanced applications of ML for the organization. This role is responsible for working on innovative projects for the team, collaborating with other experienced professionals, communication with both internal and external stakeholder leadership teams, and must demonstrate critical thinking abilities, outstanding communication skills, project management experience and the ability to lead and collaborate with other experienced technical professionals.

What we offer

Being part of one of the most strategic departments of Oracle, cooperating with an international team of data science and ML experts with diverse backgrounds worldwide. Opportunities for career growth and technical leadership Exposure to cutting edge applications of AI/ML and the opportunity to work with research teams on innovative solutions Evaluating and understanding large production deep learning systems composed of dozens of models. Developing novel metrics that provide analytical insights to non-technical stakeholders into how well these kinds of systems are operating.

Required skills

MS in Computer Science, Data Science, Machine Learning, or related technical fields At least 8 years of hands-on experience (may include graduate studies in computer science or related technical fields) with increasing scope in developing and implementing ML solutions Thorough understanding of CS fundamentals including data structures, algorithms, and complexity analysis Strong software development experience through hands on coding Detailed knowledge of modern deep learning concepts, including but not limited to Generative AI (GenAI) models, FCN, CNN, RNN, Autoencoders, Transformers, and Large Language Models (LLM) Familiarity with version control practices (Git), containers, MLOps Experience with at least one cloud platform Experience in formulating analytical problems into actionable research and applying advanced machine learning techniques for problem solving Good communication skills to convey sophisticated topics in straightforward terms to stakeholders (internal or external) A drive to solve hard problems at scale Experience in technical writing, project documentation, and/or technical publications

Preferred Skills

PhD in Computer Science, Data Science, Machine Learning, or related technical fields Familiarity with Learning to Rank models, recommender systems, especially deep learning-based recommender systems, computer vision models, Generative AI models Familiarity with ML model provenance, model versioning, and model catalogs Familiarity with serverless architecture, ML model hosting strategies, and model testing techniques

Career Level - IC4

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.