Principal Data Science & ML Engineering Consultant

EPAM Systems
London
3 weeks ago
Create job alert

Principal Data Science & ML Engineering Consultant

Join to apply for the Principal Data Science & ML Engineering Consultant role at EPAM Systems

Principal Data Science & ML Engineering Consultant

2 days ago Be among the first 25 applicants

Join to apply for the Principal Data Science & ML Engineering Consultant role at EPAM Systems

As a global leader in digital transformation, we are expanding our Data Practice across Europe to address growing client demand for advanced Data Science and Machine Learning (ML) engineering services. We are seeking a talented and experienced Principal Data Science & ML Engineering Consultant to join our dynamic team. This role emphasizes building scalable, production-ready ML solutions, optimizing model performance and driving technical innovation across diverse industries.

In this position, you will bridge the gap between data science and software engineering, delivering robust data-driven solutions that empower clients to solve real-world challenges and unlock measurable value.

Responsibilities

  • Collaborate with clients to define their data science and ML strategies, ensuring alignment with business objectives and technical feasibility
  • Lead the design, development, deployment and maintenance of ML models, emphasizing MLOps best practices for scalability and reliability
  • Design and implement data pipelines to process, transform and prepare data for ML workflows
  • Monitor, evaluate and improve model performance, addressing issues like data drift, model drift and latency in production environments
  • Build CI/CD pipelines for seamless integration of ML models into production systems
  • Work with cross-functional teams, including data engineers, software developers and business stakeholders, to ensure the successful implementation of ML solutions
  • Implement AI governance frameworks, ensuring compliance with ethical practices and industry regulations
  • Stay at the forefront of industry trends, emerging ML technologies and innovative tools to continually enhance service offerings
  • Translate complex ML concepts into actionable insights and technical roadmaps for stakeholders at various levels
  • Contribute to client-facing activities, including presentations, workshops and responses to RFPs/RFIs

Requirements

  • Bachelor’s or Master’s degree in Data Science, Statistics, Computer Science, Software Engineering or related fields. A Ph.D. is an advantage
  • Extensive experience in data science, ML engineering or related roles. Experience in leading teams on projects in not required but would be valued
  • Deep understanding of ML lifecycle management, including feature engineering, model selection, hyperparameter tuning, model validation, model evaluation and deployment for inference
  • Hands-on expertise in deploying ML models at scale in production environments (via platforms such as AWS SageMaker or Azure ML), and optimising models for efficient inference using formats like ONNX and TensorRT
  • Proficiency in Python and ML/engineering frameworks such as PyTorch, TensorFlow (including Keras), Hugging Face (Transformers, Datasets) and scikit-learn, etc.
  • Experience with MLOps tools, including MLFlow, workflow orchestrators (Airflow, Metaflow, Perfect or similar), and containerisation (Docker)
  • Strong knowledge of cloud platforms like Azure, AWS or GCP for deploying and managing ML models
  • Familiarity with data engineering tools and practices, e.g., distributed computing (e.g., Spark, Ray), cloud-based data platforms (e.g., Databricks) and database management (e.g., SQL)
  • Strong communication skills, capability to present technical concepts to technical and non-technical stakeholders
  • Experience in developing AI applications using large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems (via LangChain, LlamaIndex or custom API-driven approaches)

We offer

  • EPAM Employee Stock Purchase Plan (ESPP)
  • Protection benefits including life assurance, income protection and critical illness cover
  • Private medical insurance and dental care
  • Employee Assistance Program
  • Cyclescheme, Techscheme and season ticket loans
  • Various perks such as free Wednesday lunch in-office, on-site massages and regular social events
  • Learning and development opportunities including in-house training and coaching, professional certifications, over 22,000 courses on LinkedIn Learning Solutions and much more
  • If otherwise eligible, participation in the discretionary annual bonus program
  • If otherwise eligible and hired into a qualifying level, participation in the discretionary Long-Term Incentive (LTI) Program
  • *All benefits and perks are subject to certain eligibility requirements

Seniority level

  • Seniority levelDirector

Employment type

  • Employment typeFull-time

Job function

  • Job functionBusiness Development, Information Technology, and Engineering
  • IndustriesSoftware Development and IT Services and IT Consulting

Referrals increase your chances of interviewing at EPAM Systems by 2x

Get notified about new Principal jobs in London, England, United Kingdom.

London, England, United Kingdom 17 hours ago

London, England, United Kingdom 2 months ago

Sevenoaks, England, United Kingdom 1 month ago

London, England, United Kingdom 1 week ago

Head of Recruitment and Retention Communications

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 2 months ago

London, England, United Kingdom 6 days ago

London, England, United Kingdom 1 week ago

Head of People Function Portfolio Management Office

London, England, United Kingdom 2 weeks ago

Vice President, Software Development - Global

London, England, United Kingdom 3 days ago

London, England, United Kingdom 20 hours ago

Private Equity (LBO, Growth) Principal / Director of Investments

London, England, United Kingdom £59,999.00-£60,000.00 14 hours ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 1 month ago

London, England, United Kingdom 1 day ago

Feltham, England, United Kingdom 2 weeks ago

London, England, United Kingdom 6 days ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 1 week ago

Head of Facilities Projects, Europe, Middle East & Africa

London, England, United Kingdom 4 days ago

London, England, United Kingdom 1 month ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 23 hours ago

Head of Education and Student Experience

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Junior Data Scientist - AI Practice Team

Senior Recruitment Consultant - AI & Data Science - Manchester

Senior Consultant Data Scientist

Senior Data Scientist SME & AI Architect

Data Engineer - AI Practice Team

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.