Principal Data Science Consultant - Financial Services Expertise

EPAM
Manchester
3 weeks ago
Applications closed

Related Jobs

View all jobs

Trainee Recruitment Consultant (Progression to Director)

Senior Client Engagement Manager – Data Science

Principal Data Scientist

Principal Data Scientist - Remote

Principal Data Analyst

Principal Data Scientist

As one of the world's leading digital transformation service providers, we are looking to enhance our Data Practice across Europe to meet the increasing client demand for our Data Science and AI services. We are seeking a highly skilled and experiencedData Science Consultantto join our team.

The ideal candidate will have a strong background in data science, analytics, IT consulting, and domain expertise in financial services. As a Data Science Consultant, you will work closely with clients to understand their business challenges, design and implement data-driven solutions, and provide actionable insights that drive business value. Your ability to address challenges specific to financial services, such as risk modeling, fraud detection, and regulatory compliance, will be a critical asset.

#LI-DNI

Responsibilities

  • Support financial services clients with the definition and implementation of their AI strategy, focusing on areas such as risk management, customer analytics and operational efficiency
  • Implement and oversee AI governance frameworks, with an emphasis on regulatory compliance (e.g., Basel III, GDPR) and ethical AI principles
  • Ideate, design and implement AI-enabled solutions for financial services use cases, such as credit scoring, fraud detection, customer segmentation and predictive modeling
  • Lead the process of taking AI/ML models from development to production, ensuring robust MLOps practices tailored to financial data environments
  • Monitor and manage model performance, including addressing issues related to explainability, data drift and model drift in financial models
  • Collaborate with risk, compliance and legal teams to navigate financial regulations and ensure models meet stringent industry standards
  • Engage with senior executives, effectively communicating AI opportunities, risks and strategies in accessible terms, particularly in the financial services context
  • Maintain up-to-date knowledge of industry trends, emerging technologies and regulatory changes impacting AI/ML in financial services
  • Support pre-sales activities, including client presentations, demos and RFP/RFI responses tailored to financial services prospects

Requirements

  • Bachelors or Masters degree in Data Science, Computer Science, Statistics, Mathematics, Finance, Economics or a related field
  • 5+ years of experience in data science, analytics or related roles within the financial services industry or IT consulting for financial institutions
  • Strong communication skills, comfortable presenting to senior business leaders in banking, insurance or investment firms
  • Proven experience in financial services data science projects, such as credit risk modeling, anti-money laundering (AML) systems or algorithmic trading models
  • Familiarity with key financial industry regulations, such as Basel III, Solvency II, MiFID II or the EU AI regulatory framework
  • Deep understanding of LLMs and their application in areas like financial document analysis, customer service chatbots or regulatory reporting
  • Expertise in fraud detection techniques, anomaly detection and compliance analytics
  • Strong understanding of ML Ops principles and experience in deploying and managing AI/ML models in financial systems
  • Proficiency in Python and familiarity with AI/ML tools and platforms such as Azure, AWS, GCP, Databricks, MLFlow, Airflow and financial-specific platforms like Bloomberg Terminal, SAS, or MATLAB
  • Experience with structured and unstructured financial data, including time-series analysis, market data and transactional data
  • Ability to articulate complex AI risks and strategies to non-technical stakeholders, including senior executives in banking and insurance

Nice to have

  • Ph.D. in Data Science, Computer Science, Statistics, Mathematics, Finance, Economics or a related field
  • Expertise in stress testing models, scenario analysis and portfolio optimization

We offer

  • EPAM Employee Stock Purchase Plan (ESPP)
  • Protection benefits including life assurance, income protection and critical illness cover
  • Private medical insurance and dental care
  • Employee Assistance Program
  • Competitive group pension plan
  • Cyclescheme, Techscheme and season ticket loans
  • Various perks such as free Wednesday lunch in-office, on-site massages and regular social events
  • Learning and development opportunities including in-house training and coaching, professional certifications, over 22,000 courses on LinkedIn Learning Solutions and much more
  • If otherwise eligible, participation in the discretionary annual bonus program
  • If otherwise eligible and hired into a qualifying level, participation in the discretionary Long-Term Incentive (LTI) Program
  • *All benefits and perks are subject to certain eligibility requirements

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.