Principal Data Engineer - Core Systems

Iwoca
London
2 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist - Marketing

Principal Data Scientist / AI Engineer

Principal Data Scientist

Principal Data Scientist (Remote)

Principal Data Scientist

Principal Data Scientist - Remote

Principal Data Engineer - Core Systems Team

Hybrid in London / Remote within UK

The company

Fast, flexible finance empowers small businesses to manage their cash flow better and seize opportunities - making their business and the economy stronger as a whole. At iwoca, we do just that. We help businesses get the funds they need, when they need it, often within minutes. We’ve already made several billion in funding available to more than 100,000 businesses since we launched in 2012, and positioned ourselves as a leading Fintech in Europe.

Our mission is to finance one million businesses. We’ll get there by continuing to make our finance ever more relevant and accessible to more businesses by combining cutting-edge technology, data science, and a 5-star customer service.

The team

You’ll join the Core Systems team, who are responsible for driving innovation across the business by optimising development, building data systems, and continuously improving iwoca products. We follow Agile-inspired processes, using continuous integration and delivery, so that features go live in days or weeks, not months or years.

The role

As the Principal Data Engineer, you’ll be responsible for our data platform. You'll define our data strategy, drive the evolution of our data infrastructure, and ensure our data systems enable impactful decision-making across the business.

The Projects

You’ll identify and lead a range of strategic data engineering projects, driving improvements across our data systems, platforms, and infrastructure to support innovation, efficiency, and growth, such as:

  1. Evolve Our Snowflake Data Warehouse: Take ownership of our Snowflake platform to ensure it is a highly efficient and accessible resource for the business. Implement best practices for performance optimisation, scalability, and cost management, empowering teams to access and utilise data seamlessly.
  2. Streamline Data Pipelines: Lead the development and optimisation of data pipelines usingDBT, enabling faster and more reliable data flows.
  3. Enhance Data Governance and Quality: Design and implement robust data governance frameworks, ensuring high data quality, compliance, and consistency.
  4. Develop Scalable Data Models: Collaborate with analysts and data scientists to design and maintain data models that enable more intuitive use for reporting, machine learning, and advanced analytics.
  5. Research and Adopt Emerging Data Technologies: Stay ahead of industry trends by researching emerging tools and frameworks. Recommend and lead the adoption of innovations that enhance our data engineering capabilities, ensuring we remain competitive and forward-thinking.

The requirements

Essential:

  1. Expertise in Snowflake, including performance optimisation, cost management, and advanced data warehousing techniques.
  2. Experience in designing and implementing scalable data architectures that meet the needs of complex, data-driven organisations.
  3. Strong SQL skills and a solid understanding of relational databases (e.g., PostgreSQL).

Bonus:

  1. Advanced LookML knowledge and experience building data visualisation tools.
  2. Skilled in building and managing real-time and batch data pipelines using Kafka and DBT.
  3. Familiarity with Docker, Terraform, and Kubernetes for application orchestration and deployment.
  4. A strong numerical or technical background, ideally with a degree in mathematics, physics, computer science, engineering, or a related field.
  5. Understanding of data science concepts and experience collaborating with data scientists to productionise machine learning models.
  6. Active participation in tech or open-source communities, with a passion for sharing knowledge and inspiring others.
  7. Strong communication skills, with the ability to translate complex business needs into effective technical solutions.

The salary

We expect to pay from £100,000 - £140,000 for this role. But, we’re open-minded, so definitely include your salary goals with your application. We routinely benchmark salaries against market rates, and run quarterly performance and salary reviews.

The culture

At iwoca, we prioritise a culture of learning, growth, and support, and invest in the professional development of our team members. We value thought and skill diversity, and encourage you to explore new areas of interest to help us innovate and improve our products and services.

The offices

We put a lot of effort into making iwoca a great place to work:

  • Offices in London, Leeds, and Frankfurt with plenty of drinks and snacks
  • Events and clubs, like bingo, comedy nights, yoga classes, football, etc.

The benefits

  • Flexible working.
  • Medical insurance from Vitality, including discounted gym membership.
  • A private GP service (separate from Vitality) for you, your partner, and your dependents.
  • 25 days’ holiday, an extra day off for your birthday, the option to buy or sell an additional five days of annual leave, and unlimited unpaid leave.
  • A one-month, fully paid sabbatical after four years.
  • Instant access to external counselling and therapy sessions for team members that need emotional or mental health support.
  • 3% pension contributions to total earnings.
  • An employee equity incentive scheme.
  • Generous parental leave and a nursery tax benefit scheme to help you save money.
  • Electric car scheme and cycle to work scheme.
  • Two company retreats a year, we’ve been to France, Italy, Spain, and further afield.

And to make sure we all keep learning, we offer:

  • A learning and development budget for everyone.
  • Company-wide talks with internal and external speakers.
  • Access to learning platforms like Treehouse.

Useful links:

Seeinterview welcome packto learn more about the process.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.