Principal Data Engineer - Core Systems

Iwoca
London
10 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer (MS Azure)

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer - Core Systems Team

Hybrid in London / Remote within UK

The company

Fast, flexible finance empowers small businesses to manage their cash flow better and seize opportunities - making their business and the economy stronger as a whole. At iwoca, we do just that. We help businesses get the funds they need, when they need it, often within minutes. We’ve already made several billion in funding available to more than 100,000 businesses since we launched in 2012, and positioned ourselves as a leading Fintech in Europe.

Our mission is to finance one million businesses. We’ll get there by continuing to make our finance ever more relevant and accessible to more businesses by combining cutting-edge technology, data science, and a 5-star customer service.

The team

You’ll join the Core Systems team, who are responsible for driving innovation across the business by optimising development, building data systems, and continuously improving iwoca products. We follow Agile-inspired processes, using continuous integration and delivery, so that features go live in days or weeks, not months or years.

The role

As the Principal Data Engineer, you’ll be responsible for our data platform. You'll define our data strategy, drive the evolution of our data infrastructure, and ensure our data systems enable impactful decision-making across the business.

The Projects

You’ll identify and lead a range of strategic data engineering projects, driving improvements across our data systems, platforms, and infrastructure to support innovation, efficiency, and growth, such as:

  1. Evolve Our Snowflake Data Warehouse: Take ownership of our Snowflake platform to ensure it is a highly efficient and accessible resource for the business. Implement best practices for performance optimisation, scalability, and cost management, empowering teams to access and utilise data seamlessly.
  2. Streamline Data Pipelines: Lead the development and optimisation of data pipelines usingDBT, enabling faster and more reliable data flows.
  3. Enhance Data Governance and Quality: Design and implement robust data governance frameworks, ensuring high data quality, compliance, and consistency.
  4. Develop Scalable Data Models: Collaborate with analysts and data scientists to design and maintain data models that enable more intuitive use for reporting, machine learning, and advanced analytics.
  5. Research and Adopt Emerging Data Technologies: Stay ahead of industry trends by researching emerging tools and frameworks. Recommend and lead the adoption of innovations that enhance our data engineering capabilities, ensuring we remain competitive and forward-thinking.

The requirements

Essential:

  1. Expertise in Snowflake, including performance optimisation, cost management, and advanced data warehousing techniques.
  2. Experience in designing and implementing scalable data architectures that meet the needs of complex, data-driven organisations.
  3. Strong SQL skills and a solid understanding of relational databases (e.g., PostgreSQL).

Bonus:

  1. Advanced LookML knowledge and experience building data visualisation tools.
  2. Skilled in building and managing real-time and batch data pipelines using Kafka and DBT.
  3. Familiarity with Docker, Terraform, and Kubernetes for application orchestration and deployment.
  4. A strong numerical or technical background, ideally with a degree in mathematics, physics, computer science, engineering, or a related field.
  5. Understanding of data science concepts and experience collaborating with data scientists to productionise machine learning models.
  6. Active participation in tech or open-source communities, with a passion for sharing knowledge and inspiring others.
  7. Strong communication skills, with the ability to translate complex business needs into effective technical solutions.

The salary

We expect to pay from £100,000 - £140,000 for this role. But, we’re open-minded, so definitely include your salary goals with your application. We routinely benchmark salaries against market rates, and run quarterly performance and salary reviews.

The culture

At iwoca, we prioritise a culture of learning, growth, and support, and invest in the professional development of our team members. We value thought and skill diversity, and encourage you to explore new areas of interest to help us innovate and improve our products and services.

The offices

We put a lot of effort into making iwoca a great place to work:

  • Offices in London, Leeds, and Frankfurt with plenty of drinks and snacks
  • Events and clubs, like bingo, comedy nights, yoga classes, football, etc.

The benefits

  • Flexible working.
  • Medical insurance from Vitality, including discounted gym membership.
  • A private GP service (separate from Vitality) for you, your partner, and your dependents.
  • 25 days’ holiday, an extra day off for your birthday, the option to buy or sell an additional five days of annual leave, and unlimited unpaid leave.
  • A one-month, fully paid sabbatical after four years.
  • Instant access to external counselling and therapy sessions for team members that need emotional or mental health support.
  • 3% pension contributions to total earnings.
  • An employee equity incentive scheme.
  • Generous parental leave and a nursery tax benefit scheme to help you save money.
  • Electric car scheme and cycle to work scheme.
  • Two company retreats a year, we’ve been to France, Italy, Spain, and further afield.

And to make sure we all keep learning, we offer:

  • A learning and development budget for everyone.
  • Company-wide talks with internal and external speakers.
  • Access to learning platforms like Treehouse.

Useful links:

Seeinterview welcome packto learn more about the process.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.