Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Data Engineer, Consulting

Cognizant
London
7 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Engineer - GCP

Principal Data Engineer

Clinical Data Engineer

Clinical Data Engineer

Principal Azure Data Engineer (Databricks)

Principal Engineer – Data Science

Principal Data Engineer, Consulting

The Company

Cognizant (NASDAQ:CTSH) is a leading provider of information technology, consulting, and business process outsourcing services, dedicated to helping the world's leading companies build stronger businesses. Headquartered in Teaneck, New Jersey (U.S.), Cognizant has over 350,000 employees as of January 2024. Cognizant is a member of the NASDAQ-100, the S&P 500, the Forbes Global 1000, and the Fortune 500 and is ranked among the top performing and fastest growing companies in the world.

Cognizant Consulting

At Cognizant, our consultants orchestrate the capabilities to truly change the game across strategy, design, technology and industry/functional knowledge to deliver insight at speed and solutions at scale. Our consulting services elevate the unique abilities and business aspirations of customers and employees and build relationships based on trust and value.

The Role

The Data Engineer will propose and implement solutions using a range of AWS infrastructure, including S3, Redshift, Lambda, Step Functions, DynamoDB, AWS Glue, and Matillion. They will liaise with clients to define requirements, refine solutions, and ultimately hand them over to clients’ own technical teams. The ideal candidate will have exposure to CI/CD processes, or at least be keen to learn – our clients love infrastructure as code, and we like our engineers to own the deployment of their work. Candidates should delight in creating something from nothing on greenfield projects. We’re looking for people who can’t let go of interesting problems. We need people who can work independently; but we’re a close-knit, supportive team – we like to learn new things and share our ideas so that clients get the best return on their investments.

Qualifications:

  • Experience in analysing and cleansing data using a variety of tools and techniques.
  • Familiarity with AWS data lake-related components.
  • Hands-on experience with Redshift, Glue, and S3.
  • Extensive experience in ETL and using patterns for cloud data warehouse solutions (e.g. ELT).
  • Hands-on experience with Matillion.
  • Familiarity with a variety of Databases, incl. structured RDBMS.
  • Experience in working with a variety of data formats, JSON, XML, CSV, Parquet, etc.
  • Experience with building and maintaining data dictionaries / meta-data.
  • Experience with Linux and cloud environments.
  • Data Visualisation Technologies (e.g. Amazon QuickSight, Tableau, Looker, QlikSense).

Desirable experience:

  • Familiarity with large data techniques (Hadoop, MapReduce, Spark, etc.)
  • Familiarity with providing data via a microservice API.
  • Experience with other public cloud data lakes.
  • AWS Certifications (particularly Solution Architect Associate and Big Data Speciality).
  • Machine Learning.

Our commitment to diversity and inclusion:
Cognizant is an equal opportunity employer that embraces diversity, champions equity and values inclusion. We are dedicated to nurturing a community where everyone feels heard, accepted and welcome. Your application and candidacy will not be considered based on race, color, sex, religion, creed, sexual orientation, gender identity, national origin, disability, genetic information, pregnancy, veteran status or any other protected characteristic as outlined by federal, state or local laws.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.