Principal Data Engineer

hays-gcj-v4-pd-online
Eastleigh
9 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer...

Principal Data Engineer...

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Your newpany

Join a dynamic and innovative organisation that is at the forefront of industry advancements. My client pride themselves on fostering a collaborative and inclusive work environment where creativity and excellence thrive. The data team is dedicated to pushing boundaries and achieving remarkable results.

Your new role

As a Principal Data Engineer, you will play a pivotal role in designing, building, and managing the data infrastructure and systems, supporting the organisation's data strategy. You will be responsible for developing scalable solutions, optimising data systems, and collaborating with various teams to support data-driven decision-making. Additionally, you will mentor junior engineers, ensuring best practices and innovative techniques are implemented to enhance overall data infrastructure and strategic alignment with business goals.

You will be the ‘what does good look like’ person, you will always be horizon scanning, you will be the ideas' person, and you will always look to be improving and moving forward.

Main Responsibilities include: Develop, design, and test data deliveries throughout the development lifecycle. Train and coach developers. Manage day-to-day data delivery tasks. Collaborate with stakeholders to align data solutions with organisational objectives. Design and implement scalable, high-performance data architectures. Define standards for data modeling, storage, and retrieval. Integrate data technologies, tools, and platforms. Oversee the development of data pipelines and workflows. Ensure dataernance practices are followed. Provide thought leadership on emerging data technologies. Translateplex technical concepts for non-technical stakeholders. Develop monitoring and alerting systems for data infrastructure. Troubleshoot and resolve performance issues. Ensurepliance with data privacy and security regulations (, GDPR).

What you'll need to succeed

To excel in this role, you will need:

Minimum of 8+ years’ experience in data engineering, with at least 3 years in a leadership capacity.

Experience with Snowflake and Matillion preferred.

Hands-on experience with large-scale real-time and batch data pipelines.

Experience with Azure cloud platform, and security concepts Keyvault, ACL’s and RBACs.

Proficiency in Python, Java, SQL, or similar languages.

Experience with big data processing frameworks and modern data architectures.

Strong knowledge of relational and NoSQL databases.

Excellentmunication skills, both written and verbal.

Leadership experience and the ability to align technical solutions with business goals.

What you'll get in return

Apetitive salary and aprehensive benefits package, including:

Bonus scheme

Health and wellness programs

Professional development opportunities

A supportive and engaging work culture

Very flexible hybrid working model

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.