Principal Data Engineer

hays-gcj-v4-pd-online
Eastleigh
8 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Your newpany

Join a dynamic and innovative organisation that is at the forefront of industry advancements. My client pride themselves on fostering a collaborative and inclusive work environment where creativity and excellence thrive. The data team is dedicated to pushing boundaries and achieving remarkable results.

Your new role

As a Principal Data Engineer, you will play a pivotal role in designing, building, and managing the data infrastructure and systems, supporting the organisation's data strategy. You will be responsible for developing scalable solutions, optimising data systems, and collaborating with various teams to support data-driven decision-making. Additionally, you will mentor junior engineers, ensuring best practices and innovative techniques are implemented to enhance overall data infrastructure and strategic alignment with business goals.

You will be the ‘what does good look like’ person, you will always be horizon scanning, you will be the ideas' person, and you will always look to be improving and moving forward.

Main Responsibilities include: Develop, design, and test data deliveries throughout the development lifecycle. Train and coach developers. Manage day-to-day data delivery tasks. Collaborate with stakeholders to align data solutions with organisational objectives. Design and implement scalable, high-performance data architectures. Define standards for data modeling, storage, and retrieval. Integrate data technologies, tools, and platforms. Oversee the development of data pipelines and workflows. Ensure dataernance practices are followed. Provide thought leadership on emerging data technologies. Translateplex technical concepts for non-technical stakeholders. Develop monitoring and alerting systems for data infrastructure. Troubleshoot and resolve performance issues. Ensurepliance with data privacy and security regulations (, GDPR).

What you'll need to succeed

To excel in this role, you will need:

Minimum of 8+ years’ experience in data engineering, with at least 3 years in a leadership capacity.

Experience with Snowflake and Matillion preferred.

Hands-on experience with large-scale real-time and batch data pipelines.

Experience with Azure cloud platform, and security concepts Keyvault, ACL’s and RBACs.

Proficiency in Python, Java, SQL, or similar languages.

Experience with big data processing frameworks and modern data architectures.

Strong knowledge of relational and NoSQL databases.

Excellentmunication skills, both written and verbal.

Leadership experience and the ability to align technical solutions with business goals.

What you'll get in return

Apetitive salary and aprehensive benefits package, including:

Bonus scheme

Health and wellness programs

Professional development opportunities

A supportive and engaging work culture

Very flexible hybrid working model

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.