Principal Data Engineer

Lloyds Bank plc
Bristol
1 day ago
Create job alert

Join our Personalised Experiences and Communications Platform as a Principal Data Engineer. You'll work within multi-functional product engineering teams to deliver top-quality data capabilities, demonstrating your engineering expertise and cloud opportunities What you’ll need:* large-scale data processing systems in production with a proven track record* Good knowledge of containers (Docker, Kubernetes etc) and experience with cloud platforms such as GCP, Azure or AWS.* Strong experience working with (Real Time streaming), such as Kafka technologies* Clear understanding of data structures, algorithms, software design, design patterns and core programming concepts.* Good understating of cloud storage, networking, and resource provisioningAnd any experience of these would be really useful:* Certification in GCP “Cloud Architect”, “Cloud Developer”, “Professional Data Engineer”* Certification in Apache Kafka (CCDAK)**Why Lloyds Banking Group:**We’re on an exciting journey and there couldn’t be a better time to join us. The investments we’re making in our people, data, and technology are leading to innovative projects, fresh possibilities, and countless new ways for our people to work, learn, and thrive.About working for us:Our focus is to ensure we're inclusive every day, building an organisation that reflects modern society and celebrates diversity in all its forms. We want our people to feel that they belong and can be their best, regardless of background, identity or culture. We were one of the first major organisations to set goals on diversity in senior roles, create a menopause health package, and a dedicated Working with Cancer initiative. And it’s why we especially welcome applications from under-represented groups. We’re disability confident. So if you’d like reasonable adjustments to be made to our recruitment processes, just let us knowWe also offer a wide-ranging benefits package, which includes:• A generous pension contribution of up to 15%Extensive industry experience in designing, building and supporting distributed systems and Proven experience and knowledge of automation and CI/CD. Best practice coding/scripting experience developed in a commercial/industry setting (Python, SQL, Java, Scala or Go). Strong working experience with operational data stores, data warehouse, big data technologies and data lakesExperience in using distributed frameworks (Spark, Flink, Beam, Hadoop) • Benefits you can adapt to your lifestyle, such as discounted shopping With 320 years under our belt, we're used to change, and today is no different. Join us and help drive this change, shaping the future of finance whilst working at pace to deliver for our customers.Here, you'll do the best work of your career. Your impact will be amplified by our scale as you learn and develop, gaining skills for the future.
#J-18808-Ljbffr

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer (MS Azure)

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.