Principal Architect

Fractal
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Manager

Data Engineering Manager

Principal Data Engineer

Senior Data Engineer (Scala)

Senior Data Engineer (Scala)

Senior Data Engineer (Scala)

. Principal Architect page is loadedPrincipal Architect****Principal ArchitectlocationsLondon time typeFull time posted onPosted Today time left to applyEnd Date: March 31, 2025 (30+ days left to apply) job requisition idSR-29266 It's fun to work in a company where people truly BELIEVE in what they are doing!We're committed to bringing passion and customer focus to the business.Principal ArchitectFractal is a strategic AI partner to Fortune 500 companies with a vision to power every human decision in the enterprise. Fractal is building a world where individual choices, freedom, and diversity are the greatest assets. An ecosystem where human imagination is at the heart of every decision. Where no possibility is written off, only challenged to get better. We believe that a true Fractalite is the one who empowers imagination with intelligence. Fractal has been featured as a Great Place to Work by The Economic Times in partnership with the Great Place to Work Institute and recognized as a ‘Cool Vendor’ and a ‘Vendor to Watch’ by Gartner.Please visit for more information about FractalLocation:London, UKResponsibilities:* Evaluate the current technology landscape and recommend a forward-looking, short, and long-term technology strategic vision.* Engage with senior technical leaders at the client site, becoming a trusted thought partner by understanding their challenges and providing strategic guidance.* Build and maintain strong relationships with senior client leaders and cross-functional stakeholders.* Proactively understand client needs and align them with Fractal’s value propositions, proposing innovative and comprehensive solutions.* Collaborate with offshore delivery teams and other multidisciplinary teams within Fractal to ensure seamless integration and delivery of solutions.* Be willing to take a hands-on approach to understand complex contexts and underlying client requirements.* Participate in the creation and sharing of best practices, technical content, and new reference architectures.* Provide technical architecture leadership and direction on projects, ensuring secure, scalable, reliable, and maintainable platforms.* Work with data engineers and data scientists to develop architectures and solutions.* Assist in ensuring the smooth delivery of services, products, and solutions, while balancing immediate client needs with long-term technical strategy.Success Profile:* In-depth experience as an Architect with expertise in Google Cloud Platform and a passion for applying the latest technologies to solve complex business problems. An ideal candidate would have:* 12+ years of experience in Data Engineering and Cloud Native technologies (including Google Cloud Platforms), covering big data, analytics, and AI/ML domains.* Extensive experience with GCP tools and technologies, including BigQuery, Cloud Composer, Data Flow, Cloud Storage, Vertex AI, and Dataproc.* Expertise in creating, deploying, configuring, and scaling applications on GCP serverless infrastructure.* Strong knowledge and working experience in Data Engineering, Data Management, and Data Governance.* Proven track record of delivering multiple end-to-end Data Engineering, Data Warehousing, or Analytics projects.* Knowledge of general programming languages and frameworks, particularly Python and/or Java.* Familiarity with general technology best practices and development lifecycles such as Agile and CI/CD, as well as DevOps and MLOps for more efficient data and machine learning pipelines.* Ability to design and implement future-proof, complex global solutions using GCP services.* Hands-on experience with foundational architectures, including microservices, event-driven systems, and event streaming, and online machine learning systems.* Excellent communication and influencing skills, with the ability to adapt messages to various audiences and build consensus.Preferred Qualifications* Experience in container technologies, specifically Docker and Kubernetes.* Experience or knowledge of DevOps on GCP.* Google Cloud Professional Cloud Architect Certification.* Demonstrated ability to navigate complex stakeholder environments and build strong, lasting relationships.* Hands-on approach and willingness to delve into technical details to understand the full context of a problem and ensure the best solutions are provided.* Experience with AWS, especially in the context of hybrid cloud setups.Fractal provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.If you like wild growth and working with happy, enthusiastic over-achievers, you'll enjoy your career with us!Introduce Yourselfin the top-right corner of the page or create an account to set up email alerts as new job postings become available that meet your interest!#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.