Principal Architect

Fractal
London
11 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer (GCP)

Principal Data Analyst

Principal Data Engineer

Principal Data Engineer (MS Azure)

Principal Data Engineer (GCP)

. Principal Architect page is loadedPrincipal Architect****Principal ArchitectlocationsLondon time typeFull time posted onPosted Today time left to applyEnd Date: March 31, 2025 (30+ days left to apply) job requisition idSR-29266 It's fun to work in a company where people truly BELIEVE in what they are doing!We're committed to bringing passion and customer focus to the business.Principal ArchitectFractal is a strategic AI partner to Fortune 500 companies with a vision to power every human decision in the enterprise. Fractal is building a world where individual choices, freedom, and diversity are the greatest assets. An ecosystem where human imagination is at the heart of every decision. Where no possibility is written off, only challenged to get better. We believe that a true Fractalite is the one who empowers imagination with intelligence. Fractal has been featured as a Great Place to Work by The Economic Times in partnership with the Great Place to Work Institute and recognized as a ‘Cool Vendor’ and a ‘Vendor to Watch’ by Gartner.Please visit for more information about FractalLocation:London, UKResponsibilities:* Evaluate the current technology landscape and recommend a forward-looking, short, and long-term technology strategic vision.* Engage with senior technical leaders at the client site, becoming a trusted thought partner by understanding their challenges and providing strategic guidance.* Build and maintain strong relationships with senior client leaders and cross-functional stakeholders.* Proactively understand client needs and align them with Fractal’s value propositions, proposing innovative and comprehensive solutions.* Collaborate with offshore delivery teams and other multidisciplinary teams within Fractal to ensure seamless integration and delivery of solutions.* Be willing to take a hands-on approach to understand complex contexts and underlying client requirements.* Participate in the creation and sharing of best practices, technical content, and new reference architectures.* Provide technical architecture leadership and direction on projects, ensuring secure, scalable, reliable, and maintainable platforms.* Work with data engineers and data scientists to develop architectures and solutions.* Assist in ensuring the smooth delivery of services, products, and solutions, while balancing immediate client needs with long-term technical strategy.Success Profile:* In-depth experience as an Architect with expertise in Google Cloud Platform and a passion for applying the latest technologies to solve complex business problems. An ideal candidate would have:* 12+ years of experience in Data Engineering and Cloud Native technologies (including Google Cloud Platforms), covering big data, analytics, and AI/ML domains.* Extensive experience with GCP tools and technologies, including BigQuery, Cloud Composer, Data Flow, Cloud Storage, Vertex AI, and Dataproc.* Expertise in creating, deploying, configuring, and scaling applications on GCP serverless infrastructure.* Strong knowledge and working experience in Data Engineering, Data Management, and Data Governance.* Proven track record of delivering multiple end-to-end Data Engineering, Data Warehousing, or Analytics projects.* Knowledge of general programming languages and frameworks, particularly Python and/or Java.* Familiarity with general technology best practices and development lifecycles such as Agile and CI/CD, as well as DevOps and MLOps for more efficient data and machine learning pipelines.* Ability to design and implement future-proof, complex global solutions using GCP services.* Hands-on experience with foundational architectures, including microservices, event-driven systems, and event streaming, and online machine learning systems.* Excellent communication and influencing skills, with the ability to adapt messages to various audiences and build consensus.Preferred Qualifications* Experience in container technologies, specifically Docker and Kubernetes.* Experience or knowledge of DevOps on GCP.* Google Cloud Professional Cloud Architect Certification.* Demonstrated ability to navigate complex stakeholder environments and build strong, lasting relationships.* Hands-on approach and willingness to delve into technical details to understand the full context of a problem and ensure the best solutions are provided.* Experience with AWS, especially in the context of hybrid cloud setups.Fractal provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.If you like wild growth and working with happy, enthusiastic over-achievers, you'll enjoy your career with us!Introduce Yourselfin the top-right corner of the page or create an account to set up email alerts as new job postings become available that meet your interest!#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.