Pricing Manager (Data Scientist) - Remote

Arthur Recruitment
Bury
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist – Home Insurance Pricing & ML (Hybrid)

Financial Pricing and Data Analyst

Pricing & Master Data Analyst

Financial Pricing and Data Analyst

Machine Learning Manager

Commercial Data Analyst & National Account Manager (Training Pathway)

I am working with a leading Personal Lines Insurer who are seeking a Technical Pricing Manager. The successful candidate will be responsible for the production of specialist statistical risk models across a range of products.



Scroll down for a complete overview of what this job will require Are you the right candidate for this opportunity

As aTechnical Pricing Manager, you’ll drive strategic change by enhancing model sophistication and leveraging the latest data science techniques to support profitable business growth.


Key Responsibilities:


  • Develop and refine complex actuarial models to deliver high-impact, innovative pricing solutions
  • Conduct ad-hoc actuarial and statistical analyses, working with stakeholders across the business to address diverse challenges
  • Produce reports, documentation, and presentations to effectively communicate statistical models and insights to key stakeholders



Requirements:


  • Proficiency in data science techniques using Python or R
  • Expertise in statistical analysis software, with knowledge ofWillis Towers Watson (Emblem, Radar)being highly desirable
  • Strong understanding of pricing and underwriting principles, preferably within personal or commercial lines at a large business scale
  • Ability to oversee pricing model development and maintenance while evaluating the profitability and market positioning of new and existing product propositions
  • Proven experience working collaboratively with teams and senior stakeholders, with excellent communication skills to present complex concepts clearly


Remote working/work at home options are available for this role.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.