Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Pricing Data Scientist (Actuarial)

ZipRecruiter
London
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Pricing Data Scientist

Senior Pricing Data Scientist

Senior Pricing Data Scientist

Pricing Data Science Lead- SME

Pricing Data Science Lead- SME

Pricing Data Science Lead- SME

Job Description

Pricing Data Scientist (Actuarial)

London (4 days per week)

Are you a Data Scientist with a background as an Actuary?

Do you want to work in a high-impact hub team that optimises modelling processes and applies Bayesian techniques to commercial insurance?

We are looking for a skilled Data Scientist to join a centralised team, collaborating with Data Scientists, Python developers, Actuaries and senior insurance experts to drive innovation in pricing and risk assessment by developing GLM, Gradient Boost, Bayesian and Linear Regression models for pricing models.

What You’ll Be Doing:

  • Enhancing actuarial models with advanced statistical and machine learning techniques.
  • Developing and optimising pricing models using R, tidyverse, Python, and cloud-based tools like AWS and Snowflake.
  • Working on a variety of global commercial lines projects, with some exposure to personal lines.
  • Collaborating with stakeholders across the business to improve modelling processes and decision-making.
  • Supporting the integration of Bayesian models into the pricing framework.

What We’re Looking For:

Must have:

  • Actuarial background with (ideally a fully or partially qualified Actuary) (eg – FIA, AIA, CERA, FSA etc or equivalent)
  • 3+ years of practical experience with R, Tidyverse

Bonus if you have:

  • Experience with modern cloud technologies (AWS, Snowflake, etc.).
  • Strong coding and problem-solving skills, with the ability to work on complex modelling challenges.
  • Excellent stakeholder management and communication skills.

If you are ready to take on a role where you can apply your actuarial expertise and data science skills in a dynamic, forward-thinking environment, we’d love to hear from you.

Apply now or reach out for more details!

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.