Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Postdoctoral Transition Fellow (Senior Research Associate)

University of Cambridge
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Faculty Fellowship Programme Data Science (January 2026)

PDRA/PDRF - Genomic Data Science/Bioinformatics

Research Fellow in Data Science

Genomic Data Science Fellow-Immune Roles in Neurodegeneration

Research Fellow in machine learning and spatial statistics

PDRA/PDRF - Genomic Data Science/Bioinformatics

We are seeking to recruit a highly motivated Postdoctoral Transition Fellow in Machine Learning and Cancer to join Professor Richard Gilbertson's group at the Cancer Research UK Cambridge Institute as part of the Cancer Research UK Children's Brain Tumour Centre (CRUK CBTCE).

The CRUK CBTCE launched in 2018 and is hosted by the University of Cambridge and The Institute of Cancer Research, London. Brain tumours remain the most common cause of cancer-related death in children. Limited progress in these diseases relates directly to the use of inaccurate preclinical pipelines that fail to identify drugs with activity in patients. The CRUK CBTCE convenes a critical mass of expert personnel, infrastructure and global collaborations in paediatric brain tumour biology, medicinal chemistry, pharmacology, together with expertise in preclinical and clinical trials. Our research strategy is centred around our innovative pipeline that aims to generate curative treatments for children with brain tumours. The CRUK CBTCE has received an additional 5 years of funding from CRUK and is currently expanding capacity, building on the success of our previous 6 years programme.

We are recruiting a Postdoctoral Transition Fellow to develop an independent research project using artificial intelligence and machine learning to create the world's first entirely digital models of the hardest to treat children's brain tumours. The models will be used to help identify new treatment targets, develop potential new drugs and test them via virtual clinical trials within computer models of cancer. The role will focus on the development of state-of-the-art machine learning approaches for the analysis of spatial sequencing data of childhood cancers including medulloblastoma and ependymoma in collaboration with the Alan Turing Institute, London and MD Anderson Cancer Center, Texas USA.

Fixed-term: The funds for this post are available for 2 years in the first instance.

Once an offer of employment has been accepted, the successful candidate will be required to undergo a basic disclosure (criminal records check) check and a security check.

We are anticipating a multiple round interview process with the first round to be held early December 2024 and in person interviews to be held in January 2025.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.