Postdoc in Bayesian machine learning, AstraZeneca, Cambridge, UK

The International Society for Bayesian Analysis
Cambridge
4 days ago
Create job alert

Postdoc in Bayesian machine learning, AstraZeneca, Cambridge, UK

Mar 29, 2018

PREDICTING DRUG TOXICITY WITH BAYESIAN MACHINE LEARNING MODELS

We’re currently looking for talented scientists to join our innovative academic-style Postdoc. From our centre in Cambridge, UK you’ll be in a global pharmaceutical environment, contributing to live projects right from the start. You’ll take part in a comprehensive training programme, including a focus on drug discovery and development, given access to our existing Postdoctoral research, and encouraged to pursue your own independent research. It’s a newly expanding programme spanning a range of therapeutic areas across a wide range of disciplines. What’s more, you’ll have the support of a leading academic advisor, who’ll provide you with the guidance and knowledge you need to develop your career.

You will be part of the Quantitative Biology group and develop comprehensive Bayesian machine learning models for predicting drug toxicity in liver, heart, and other organs. This includes predicting the mechanism as well as the probability of toxicity by incorporating scientific knowledge into the prediction problem, such as known causal relationships and known toxicity mechanisms. Bayesian models will be used to account for uncertainty in the inputs and propagate this uncertainty into the predictions. In addition, you will promote the use of Bayesian methods across safety pharmacology and biology more generally. You are also expected to present your findings at key conferences and in leading publications

This project is in collaboration with Prof. Andrew Gelman at Columbia University, and Dr Stanley Lazic at AstraZeneca.

Education and Experience Required:

– PhD in Statistics, Computer Science, Data Science, or similar
– Excellent knowledge of either R or Python (ideally both)

– Knowledge of Bayesian statistics
– Knowledge of modern Bayesian software such as Stan and PyMC3
– Knowledge of (or an interest in) life sciences

This is a 3 year programme. 2 years will be a Fixed Term Contract, with a 1 year extension which will be merit based. The role will be based at Cambridge, UK with a competitive salary on offer.

To apply for this position, please follow the link below:
https://job-search.astrazeneca.com/job/cambridge/post-doc-fellow-bayesian-machine-learning/7684/7417160


#J-18808-Ljbffr

Related Jobs

View all jobs

Postdoc at Oxford: machine learning & global health

Research positions available in machine learning at all levels: Research Fellow, Postdoc, PhD s[...]

Research Fellows and Postdocs in Probabilistic Machine Learning and Bayesian Inference

Postdocs and Research Fellows: Probabilistic machine learning, Centre for AI Fundamentals, Manc[...]

Exoplanetary Remote Sensing & Data Science Postdoc

Computer Vision Physicist / Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.