Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

PNE Data Foundations Sr. Lead

Mars IS UK
Windsor
5 months ago
Applications closed

Job Description:

The PNE Data Foundations Sr Lead ensures that Pet Nutrition Europe (PNE) has a strong, governed, and scalable data foundation to enable high-quality analytics and insights. This role is critical in bridging the gap between the AOE D&A data team and PNE, ensuring alignment with global data models, governance principles, and strategic data initiatives such as the DDF (Digital Data Foundation) program.

What are we looking for?

  • Preferred education Is a university degree In business or IT
  • Strong background in data engineering, data governance, and data architecture, ideally in a multinational or matrixed organization.

  • 5+ years of experience in data engineering, analytics, or data management, with hands-on expertise in cloud-based data platforms (e.g., Azure, AWS, GCP, Snowflake).

  • Proven expertise in designing, developing, and maintaining scalable data pipelines, ETL/ELT processes, and integrations to support advanced analytics.

  • Experience with data governance frameworks, master data management (MDM), metadata management, and ensuring data compliance with global standards.

  • Deep understanding of SQL, Python, Spark, or other relevant data processing technologies used for data transformation and analytics enablement.

  • Familiarity with modern data architectures, including data lakes, data warehouses, and data mesh principles.

  • Experience working with global and regional teams to align on data strategy, governance, and best practices.

  • Strong knowledge of data quality frameworks and best practices for ensuring high integrity, reliability, and consistency of data assets.

What will be your key responsibilities?

  • Data Governance & Compliance:Ensure all PNE data assets follow the governance frameworks, data quality standards, and security policies defined by the AOE D&A data team.

  • Data Model & Architecture Alignment:Ensure that analytics solutions within PNE fully leverage the data models, governance structures, and best practices established at the AOE level.

  • Data Engineering & Infrastructure:Oversee the design, development, and maintenance of data pipelines, integrations, and ETL processes to ensure efficient data flow and accessibility for analytics use cases.

  • Collaboration & Stakeholder Management:Act as the key connection between AOE D&A and PNE, facilitating knowledge-sharing, alignment, and implementation of strategic data initiatives, including the DDF program.

  • Data Platform Optimization:Work closely with AOE data teams and PNE analytics teams to optimize the data infrastructure, ensuring performance, scalability, and cost efficiency.

  • Metadata & Asset Management:Drive consistent metadata management and data asset governance, ensuring data reliability, accessibility, and standardization across PNE.

  • Enablement & Best Practices:Educate and support the PNE teams in data stewardship best practices, ensuring they effectively leverage governed data assets and self-service capabilities.

  • Monitoring & Data Quality Assurance:Implement data validation, lineage tracking, and anomaly detection mechanisms to ensure high data quality across PNE analytics initiatives.

What can you expect from Mars?

  • Work with diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.