Pensions System Calculation and Data Analyst

London
8 months ago
Applications closed

Related Jobs

View all jobs

Benefit Risk Management Center of Excellence Data Scientist

Benefit Risk Management Center of Excellence Data Scientist

Head of Data Engineering (Grade M1)

Principal Data Engineer

Associate Data Scientist

Environmental Data Analyst

Job purpose

To support the Pension & Reward Operations Manager with all aspects of the maintenance and development of the Pensions Administration System (altair).

To assist in production, management and processing of all data extracts and interfaces and to provide ongoing support to pension projects.

Principal accountabilities

To support the maintenance and development of the pension administration system (altair) ensuring accuracy of all member records, benefit calculations, letters and workflows.
Assist in the development and testing of pension system workflows, calculations and letters, including issue resolution, software release updates and change request development and implementation.
Carry-out monthly reconciliations of payroll and HR files ensuring that the pension administration system is maintained and kept up to date.
Work with the Pensions & Reward Operations Manager on all data projects (e.g. Pension Dashboard implementation, scheme data extracts, reporting, pension increases and Benefit Statements) ensuring data is provided on time and in specified formats.
Assist in production of regular interfaces to external suppliers, resolving any processing queries. Upload interfaces as required.
Work with Pensions & Reward Operations Manager to ensure that all member records are updated correctly and support the processing of annual membership movement and contribution reconciliations.
Produce management information within agreed timescales.
To take on any other duties that are within the employee's skills and abilities whenever reasonably instructed.

Scope

§ To assist in all aspects of the maintenance and development of the UK pension administration system.

§ Ensure data extracts and interfaces are provided within agreed timescales and format.

§ Contribute to the development of the day-to-day administration of the UK pension scheme, for example changes to process workflows, member communications and improvement in reporting activities, as well as project based activities.

§ To assist in the delivery of all reporting and data analytical requirement.

This describes what is required to do the job, it may not describe the current job holder but should describe the typical attributes or traits needed for success in the position.

Qualifications/ knowledge/ experience

(Technical/ professional knowledge and skills competency)

Educated to degree level

Desirable

Stong knowledge and experience of UK pension arrangements

Essential

Previous systems support experience would be an advantage

Essential

Experience with handling large volumes of personal data

Essential

Strong Microsoft Excel and Word skills

Essential

Strong understanding of manual pension benefit calculations

Essential

Analytical and problem-solving skills

Essential

Strong Microsoft Power BI skills

Desirable

Advanced SQL skills

Desirable

Advanced VBA skills

Desirable

Previous Altair/Axise (heywood) administration system experience

Desirable

Personal skills and key competencies

(including JM behavioural competencies)

Detail oriented and meticulous

Essential

Work on own initiative (as role will be primarily home-based)

Essential

Very good communication skills

Essential

High degree of numeracy

Essential

Flexible and committed and willing to take on ad-hoc tasks as required

Essential

Able to work to deadlines

Essential

Team orientated individual with good interpersonal skills

Essential

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.