Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

NLP / LLM Scientist – Applied AI ML Senior Associate – Machine Learning Centre of E[...]

NLP PEOPLE
London
7 months ago
Applications closed

Related Jobs

View all jobs

LLM / NLP Data Scientist Lead - Vice President - ESG

Senior Data Scientist (LLM)

Data Scientist Lead - NLQ/LLM

Lead Data Scientist - NLP

Sr. Data Scientist, GenAI Algorithms (Based in Dubai)

Data Scientist Associate

NLP / LLM Scientist – Applied AI ML Senior Associate – Machine Learning Centre of Excellence

The Machine Learning Center of Excellence invites the successful candidate to apply sophisticated machine learning methods to a wide variety of complex tasks including natural language processing, speech analytics, time series, reinforcement learning and recommendation systems.

The candidate must excel in working in a highly collaborative environment together with the business, technologists and control partners to deploy solutions into production. The candidate must also have a strong passion for machine learning and invest independent time towards learning, researching and experimenting with new innovations in the field. The candidate must have practiced expertise in Deep Learning with hands-on implementation experience and possess strong analytical thinking, a deep desire to learn and be highly motivated.

Job Responsibilities

  1. Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community.
  2. Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as NLP, speech recognition and analytics, time-series predictions or recommendation systems.
  3. Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production.
  4. Drive Firm wide initiatives by developing large-scale frameworks to accelerate the application of machine learning models across different areas of the business.

Required Qualifications, Capabilities, and Skills

  1. Solid background in NLP or speech recognition and analytics, personalization/recommendation and hands-on experience and solid understanding of machine learning and deep learning methods.
  2. PhD in a quantitative discipline, e.g. Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science with reasonable industry experience, or an MS with industry or research experience in the field.
  3. Applied experience with machine learning and deep learning toolkits (e.g.: TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas).
  4. Ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals.
  5. Experience with big data and scalable model training and solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences.
  6. Scientific thinking with the ability to invent and to work both independently and in highly collaborative team environments.
  7. Curious, hardworking and detail-oriented, and motivated by complex analytical problems.

Preferred Qualifications, Capabilities, and Skills

  1. Strong background in Mathematics and Statistics and familiarity with the financial services industries and continuous integration models and unit test development.
  2. Knowledge in search/ranking, Reinforcement Learning or Meta Learning.
  3. Experience with A/B experimentation and data/metric-driven product development, cloud-native deployment in a large scale distributed environment and ability to develop and debug production-quality code.
  4. Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal.

About MLCOE

The Machine Learning Center of Excellence (MCLOE) team partners across the firm to create and share Machine Learning Solutions for our most challenging business problems. In this role you will work and collaborate with a team comprised of a multi-disciplinary community of experts focused exclusively on Machine Learning. On this team you will work with cutting-edge techniques in disciplines such as Deep Learning and Reinforcement Learning.

For more information about the MLCOE, please visithttp://www.jpmorgan.com/mlcoe. To learn about how we’re using AI/ML to drive transformational change, please read this blog:https://www.jpmorgan.com/insights/technology/technology-blog?source=cib_di_jp_aBtechblog102.

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. This includes ensuring the quality, integrity, and security of the company’s data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

Company:

Chase- Candidate Experience page

Level of Experience:

Senior (5+ years of experience)

Tagged as:Big Data,Industry,Natural Language Processing,NLP,Speech Recognition,United Kingdom

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.