NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

NLP PEOPLE
London
1 week ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - NLP AI Research

Senior Data Scientist - NLP AI Research

NLP/LLM Research Scientist (PhD) – Cambridge Hybrid

NLP/LLM Research Scientist (PhD) – Hybrid, Cambridge

Senior Data Scientist with a GenAI focus

Senior Data Scientist

NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

The Machine Learning Center of Excellence invites the successful candidate to apply sophisticated machine learning methods to a wide variety of complex tasks including natural language processing, speech analytics, time series, reinforcement learning and recommendation systems.

The candidate must excel in working in a highly collaborative environment together with the business, technologists and control partners to deploy solutions into production. The candidate must also have a strong passion for machine learning and invest independent time towards learning, researching and experimenting with new innovations in the field. The candidate must have solid expertise in Deep Learning with hands-on implementation experience and possess strong analytical thinking, a deep desire to learn and be highly motivated.

Job Responsibilities
• Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community
• Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as NLP, speech recognition and analytics, time-series predictions or recommendation systems
• Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production
• Drive Firm wide initiatives by developing large-scale frameworks to accelerate the application of machine learning models across different areas of the business

Required qualifications, capabilities, and skills
• Solid background in NLP or speech recognition and analytics, personalization/recommendation and hands-on experience and solid understanding of machine learning and deep learning methods
• PhD in a quantitative discipline, e.g. Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science with reasonable industry experience, or an MS with significant industry or research experience in the field
• Extensive experience with machine learning and deep learning toolkits (e.g.: TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas)
• Ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals
• Experience with big data and scalable model training and solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences.
• Scientific thinking with the ability to invent and to work both independently and in highly collaborative team environments
• Solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences. Curious, hardworking and detail-oriented, and motivated by complex analytical problems

Preferred qualifications, capabilities, and skills
• Strong background in Mathematics and Statistics and familiarity with the financial services industries and continuous integration models and unit test development
• Knowledge in search/ranking, Reinforcement Learning or Meta Learning
• Experience with A/B experimentation and data/metric-driven product development, cloud-native deployment in a large scale distributed environment and ability to develop and debug production-quality code
• Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal

About MLCOE
The Machine Learning Center of Excellence (MCLOE) team partners across the firm to create and share Machine Learning Solutions for our most challenging business problems. In this role you will work and collaborate with a team comprised of a multi-disciplinary community of experts focused exclusively on Machine Learning. On this team you will work with cutting-edge techniques in disciplines such as Deep Learning and Reinforcement Learning

For more information about the MLCOE, please visit http://www.jpmorgan.com/mlcoe. To learn about how we’re using AI/ML to drive transformational change, please read this blog: https://www.jpmorgan.com/insights/technology/technology-blog?source=cib_di_jp_aBtechblog102

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. This includes ensuring the quality, integrity, and security of the company’s data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

Company:

Chase- Candidate Experience page

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

Tagged as: Big Data, Industry, Natural Language Processing, NLP, Speech Recognition, United Kingdom


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.