Natural Language Processing (NLP) Engineer

Your Personal AI
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Remote NLP/LLM Engineer – 6‑Month Contract

Senior NLP Engineer — Transformer Models, Prod., Hybrid

NLP/LLM Research Scientist (PhD) – Cambridge Hybrid

Senior AI & ML Lecturer — NLP, RL & Security

Machine Learning Engineer at High-growth NLP technology startup

Senior ML Engineer: NLP & LLM Agents for Legal Tech

Natural Language Processing (NLP) Engineer at Your Personal AI

Your Personal AI is seeking a talented Natural Language Processing (NLP) Engineer to join our AI Research and Development department. As an NLP Engineer, you will play a key role in developing cutting-edge algorithms and models to enhance our AI technology.

  • Collaborate with a team of researchers and developers to design and implement NLP solutions

  • Utilize machine learning techniques to improve language understanding and processing

  • Conduct experiments and analyze data to optimize NLP algorithms

  • Stay up-to-date with the latest advancements in NLP and AI technologies

If you are passionate about NLP and have a strong background in machine learning and data analysis, we would love to hear from you. Join us at Your Personal AI and be part of a dynamic team that is shaping the future of artificial intelligence.



Job Requirements for Natural Language Processing (NLP) Engineer at Your Personal AI

Thank you for your interest in the NLP Engineer role at Your Personal AI in the AI Research and Development department. To ensure we find the best candidate for this position, please review and include the following job requirements in your job posting:

  • Bachelor's degree in Computer Science, Engineering, or related field

  • Proven experience in developing NLP algorithms and models

  • Familiarity with machine learning techniques and frameworks

  • Proficiency in programming languages such as Python, Java, or C++

  • Strong analytical and problem-solving skills

  • Excellent communication and teamwork abilities

  • Ability to work independently and meet project deadlines

If the job requirements are not met, we kindly ask you to revise the job posting accordingly. Thank you for your attention to this matter.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.