MLOps Engineer

Aveni
Edinburgh
11 months ago
Applications closed

Related Jobs

View all jobs

MLOps Engineer

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

This is a remote position.

About the Company - Aveni is an award-winning technology company revolutionising the financial services industry. We utilise advanced AI to deliver scalable efficiency, leveraging cutting-edge Natural Language Processing (NLP) and Large Language Model (LLM) expertise. Our deep financial services domain knowledge allows us to drive unparalleled productivity and compliance for our clients. Having secured series A funding in July, our team is expanding fast, with strong growth plans predicted over the next few years.

About the Role - We are looking for a skilled and experienced MLOps Engineer to design, implement, and optimise machine learning infrastructure. You’ll be crucial in managing the lifecycle of ML models, from deployment to monitoring and maintenance, in a collaborative, fast-paced environment.


Responsibilities

  • Develop, deploy, and maintain scalable MLOps pipelines to automate key workflows.
  • Ensure solutions are platform-independent and support multi-cloud environments.
  • Use Infrastructure-as-Code (IaC) tools like Terraform or CloudFormation for automated deployments.
  • Collaborate with data scientists, engineers, and other teams to create optimised, production-ready solutions.
  • Deploy and orchestrate ML models using Docker, Kubernetes, and other tools; experience with deploying large-scale LLMs is necessary.
  • Implement monitoring and logging for ML models, ensuring robust alert systems and dashboards for model health and performance.
  • Optimise CI/CD pipelines for ML models to enhance speed and reliability.
  • Develop and enforce best practices for MLOps, including versioning and scalable deployments.
  • Support the transition from AWS to a multi-cloud environment while ensuring compatibility and reliability.


Requirements

  • Demonstrated experience in MLOps or related fields focusing on production-level ML deployment.
  • Hands-on experience with AWS, Azure, GCP, and platform-agnostic cloud solutions.
  • Proficiency with Docker, Kubernetes, and IaC tools like Terraform.
  • Experience with CI/CD pipelines using GitLab CI/CD, Jenkins, etc.
  • Strong understanding of ML model lifecycle management.
  • Familiarity with popular ML frameworks (e.g., TensorFlow, PyTorch).
  • Proficient scripting skills in Python, Bash, or similar.

Preferred Skills

  • Experience transitioning from AWS to a multi-cloud setup.
  • Familiarity with cloud-native storage and data engineering workflows.
  • Understanding of distributed systems and high-performance computing.


Benefits


  • 34 days of holiday plus your birthday off
  • Career progression opportunities
  • Share options
  • Flexible and remote working
  • Ongoing career development and training
  • Access to perks like free coffee, movie downloads, and high-street discounts
  • Comprehensive employee assistance program for emotional wellbeing
  • Access to a fitness portal and gym discounts
  • Pension scheme

<span class="font" style="font-family:-apple-system, system-ui, "system-ui", "Segoe UI", Roboto, "Helvetica Neue", "Fira Sans", Ubuntu, Oxygen, "Oxygen Sans", Cantarell, "Droid Sans", "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Lucida Grande", Helvetica, Arial, sans-serif">Join Us in Making a Difference - At Aveni, we value diversity and believe it fuels innovation. We are dedicated to building an inclusive team where everyone is empowered to contribute. If you're excited to leverage technology to impact financial services positively, we encourage you to apply—even if you don’t meet every requirement. Take the next step in your career and join Aveni in transforming the future of financial services with AI. Apply now to be part of our journey!


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.