MLOps Engineer

Aveni
Edinburgh
1 year ago
Applications closed

Related Jobs

View all jobs

MLOps Data Engineer (GCP)

Lead MLOps Engineer

Lead MLOps Engineer

Lead MLOps Engineer

MLOps / ML Engineer

MLOps Data Engineer (GCP)

This is a remote position.

About the Company - Aveni is an award-winning technology company revolutionising the financial services industry. We utilise advanced AI to deliver scalable efficiency, leveraging cutting-edge Natural Language Processing (NLP) and Large Language Model (LLM) expertise. Our deep financial services domain knowledge allows us to drive unparalleled productivity and compliance for our clients. Having secured series A funding in July, our team is expanding fast, with strong growth plans predicted over the next few years.

About the Role - We are looking for a skilled and experienced MLOps Engineer to design, implement, and optimise machine learning infrastructure. You’ll be crucial in managing the lifecycle of ML models, from deployment to monitoring and maintenance, in a collaborative, fast-paced environment.


Responsibilities

  • Develop, deploy, and maintain scalable MLOps pipelines to automate key workflows.
  • Ensure solutions are platform-independent and support multi-cloud environments.
  • Use Infrastructure-as-Code (IaC) tools like Terraform or CloudFormation for automated deployments.
  • Collaborate with data scientists, engineers, and other teams to create optimised, production-ready solutions.
  • Deploy and orchestrate ML models using Docker, Kubernetes, and other tools; experience with deploying large-scale LLMs is necessary.
  • Implement monitoring and logging for ML models, ensuring robust alert systems and dashboards for model health and performance.
  • Optimise CI/CD pipelines for ML models to enhance speed and reliability.
  • Develop and enforce best practices for MLOps, including versioning and scalable deployments.
  • Support the transition from AWS to a multi-cloud environment while ensuring compatibility and reliability.


Requirements

  • Demonstrated experience in MLOps or related fields focusing on production-level ML deployment.
  • Hands-on experience with AWS, Azure, GCP, and platform-agnostic cloud solutions.
  • Proficiency with Docker, Kubernetes, and IaC tools like Terraform.
  • Experience with CI/CD pipelines using GitLab CI/CD, Jenkins, etc.
  • Strong understanding of ML model lifecycle management.
  • Familiarity with popular ML frameworks (e.g., TensorFlow, PyTorch).
  • Proficient scripting skills in Python, Bash, or similar.

Preferred Skills

  • Experience transitioning from AWS to a multi-cloud setup.
  • Familiarity with cloud-native storage and data engineering workflows.
  • Understanding of distributed systems and high-performance computing.


Benefits


  • 34 days of holiday plus your birthday off
  • Career progression opportunities
  • Share options
  • Flexible and remote working
  • Ongoing career development and training
  • Access to perks like free coffee, movie downloads, and high-street discounts
  • Comprehensive employee assistance program for emotional wellbeing
  • Access to a fitness portal and gym discounts
  • Pension scheme

<span class="font" style="font-family:-apple-system, system-ui, "system-ui", "Segoe UI", Roboto, "Helvetica Neue", "Fira Sans", Ubuntu, Oxygen, "Oxygen Sans", Cantarell, "Droid Sans", "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Lucida Grande", Helvetica, Arial, sans-serif">Join Us in Making a Difference - At Aveni, we value diversity and believe it fuels innovation. We are dedicated to building an inclusive team where everyone is empowered to contribute. If you're excited to leverage technology to impact financial services positively, we encourage you to apply—even if you don’t meet every requirement. Take the next step in your career and join Aveni in transforming the future of financial services with AI. Apply now to be part of our journey!


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.