National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

MLOps Engineer

Methods Business and Digital Technology
Worcester
4 months ago
Applications closed

Related Jobs

View all jobs

MLOps Engineer | Azure & Terraform | Circa €45k

Data Engineer - MLOps

Data Engineer - MLOps

Data Engineer - MLOps

Senior MLOps Engineer [UAE Based]

Data Engineer - MLOps

Methods Analytics is looking for a MLOps Engineer preferably has worked in the defence sector.

Location:

4-5days/w onsite at one of the follow locations: Worcester/Great Malvern/Gloucester/Poole or London

Salary:

£55,000 to £60,000 + bonus+ benefits

Who we are:

Methods Analytics exists to improve society by helping people make better decisions with data. Combining passionate people, sector-specific insight and technical excellence to provide our customers an end-to-end data service. We use a collaborative, creative and user centric approach data to do good and solve difficult problems. We ensure that our outputs are transparent, robust and transformative.

We value discussion and debate as part of our approach. We will question assumptions, ambition and process – but do so with respect and humility. We relish difficult problems, and overcome them with innovation, creativity and technical freedom to help us design optimum solutions. Ethics, privacy and quality are at the heart of our work and we will not sacrifice these for outcomes. We treat data with respect and use it only for the right purpose. Our people are positive, dedicated and relentless. Data is a vast topic, but we strive for interactions that are engaging, informative and fun in equal measure.

Methods Analytics was acquired by the Alten Group in early 2022.

Requirements

What You'll Be Doing as an MLOps Engineer:

  • Collaborate with Cross-Functional Teams: Work closely with data scientists, engineers, architects, and other stakeholders to align MLOps solutions with business objectives, explaining complex technical concepts in accessible language for non-technical audiences.
  • Automate Workflows and Ensure Reproducibility: Write scripts to automate ML workflows and ensure reproducibility of machine learning experiments, enabling consistent and efficient results.
  • Set Up ML Environments and Deployment Tools: Configure and maintain ML deployment environments using platforms and tools such as Kubernetes, Docker, and cloud platforms (e.g., AWS, Azure), ensuring scalability and reliability.
  • Develop CI/CD Pipelines: Build and maintain CI/CD pipelines to streamline model deployment and ensure automated, secure, and reliable model lifecycles from development to production.
  • Monitor and Maintain Deployed Models: Conduct regular performance reviews and data audits of deployed models, tracking model drift and identifying opportunities for optimisation to enhance performance and reliability.
  • Security and Vulnerability Management: Participate in threat modelling to identify and assess potential security risks throughout the ML lifecycle. Implement and maintain vulnerability management practices to proactively address security risks, ensuring the integrity and resilience of deployed models and infrastructure.
  • Troubleshoot and Resolve Issues: Proactively troubleshoot issues related to model performance, data pipelines, and infrastructure, identifying and resolving root causes to maintain stability
  • Champion Best Practices and Compliance: Ensure solutions follow best practices in security, scalability, and compliance, particularly aligning with Secure by Design and high-assurance software requirements.
  • Identify and Implement Reusable Solutions: Focus on reusability to maximise development efficiencies, reducing costs across programmes by identifying commonalities and building scalable solutions.
  • Collaborate on Data Architecture: Work with data architects to ensure the MLOps pipeline integrates seamlessly within the broader data architecture, aligning with governance and compliance standards.

 

Requirements:

You Will Demonstrate:

  • Technical Proficiency in Python and ML Frameworks: Experience with Python and ML frameworks like TensorFlow, PyTorch, or Scikit-Learn, enabling efficient deployment and management of ML models.
  • Containerisation and Orchestration: Hands-on experience with containerisation and orchestration tools, such as Docker and Kubernetes, to ensure reliable, scalable model deployments.
  • CI/CD Expertise: Proven experience developing and managing CI/CD pipelines using tools like Jenkins, Git, and Terraform, streamlining deployment and automating testing.
  • Knowledge of Cloud and ML Infrastructure: Experience with cloud platforms (AWS, Azure, or GCP), infrastructure-as-code (IaC) practices, and managing cloud-based ML workflows and resources at scale.
  • Experience with Threat Modelling and Vulnerability Management: Proven ability to conduct threat modelling exercises to identify security risks and implement vulnerability management practices to ensure robust and secure machine learning systems.
  • Experience in Security and Compliance: Demonstrated experience working within secure, high-assurance environments, ideally including defence or similarly regulated settings.
  • Cross-Functional Collaboration Skills: Ability to collaborate across teams to translate business requirements into technical specifications, maintaining clear and effective communication.
  • Strong Troubleshooting Abilities: Proficient in diagnosing and resolving model and infrastructure-related issues, identifying root causes, and implementing corrective actions.

 You may also have some of the desirable skills and experience:

  • Experience with MLOps Tools and Version Control: Familiarity with tools such as MLflow, DVC, Seldon Core, Metaflow, and Airflow or Prefect, and version control practices for models and datasets to ensure reproducibility, traceability, and compliance across ML workflows.
  • Scalability and Optimisation in Production Environments: Experience managing high-performance, low-latency data systems and optimising ML model infrastructure to handle large-scale data in production.
  • Understanding of Agile Development Methodologies: Familiarity with iterative and agile development methodologies such as SCRUM, contributing to a flexible and responsive development environment.
  • Familiarity with Recent Innovations: Knowledge of recent innovations such as GenAI, RAG, and Microsoft Copilot, as well as certifications with leading cloud providers and in areas of data science, AI, and ML.

 

This role will require you to have or be willing to go through Security Clearance. As part of the onboarding process candidates will be asked to complete a Baseline Personnel Security Standard; details of the evidence required to apply may be found on the government website Gov.UK. If you are unable to meet this and any associated criteria, then your employment may be delayed, or rejected. Details of this will be discussed with you at interview

Benefits

Methods Analytics is passionate about its people; we want our colleagues to develop the things they are good at and enjoy.

By joining us you can expect

  • Autonomy to develop and grow your skills and experience
  • Be part of exciting project work that is making a difference in society
  • Strong, inspiring and thought-provoking leadership
  • A supportive and collaborative environment

As well as this, we offer:

  • Development access to LinkedIn Learning, a management development programme and training
  • Wellness 24/7 Confidential employee assistance programme
  • Social – Breakfast Tuesdays, Thirsty Thursdays and Pizza on the last Thursday of each month as well as commitment to charitable causes
  • Time off 25 days a year
  • Pension Salary Exchange Scheme with 4% employer contribution and 5% employee contribution
  • Discretionary Company Bonus based on company and individual performance
  • Life Assurance of 4 times base salary
  • Private Medical Insurance which is non-contributory (spouse and dependants included)
  • Worldwide Travel Insurance which is non-contributory (spouse and dependants included)
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.