ML Team Lead

Top Remote Talent
Bristol
1 month ago
Create job alert


A software development company is looking for a talented, long-term ML Team Lead. 

The company is a team of experts providing analytical services to healthcare clients. You will join an international team of first class professionals who are passionate to create products that improve quality of medical services. 

We have the highest expectations in the industry regarding your ability to deliver high quality, performant, scalable, clean, and tested software. 

Responsibilities:

  • Strong analytical skills (good statistics is a must);

• Team Leadership and Development: Lead a small team of 2-4 data scientists focused on solving challenging problems using tabular data with large, feature-rich datasets. Create a collaborative and productive environment, support team members’ technical and professional growth;

• Technical Task Planning and Prioritization: Work with the Product Manager to understand business goals, set task priorities, and manage team resources effectively. Recommend task prioritization strategies to increase product impact and efficiency;

• Technical Oversight and Quality Assurance: Lead the team through all stages of model development, from design to deployment, ensuring best practices in code quality, documentation, and reproducibility. Set clear, repeatable documentation standards to support scalability and knowledge sharing. Implement systems to monitor model performance and keep ML services stable;

• Cross-Functional Collaboration: Work closely with other teams (e.g., Machine Learning Engineers, MLOps, UI) to ensure ML models integrate smoothly with the overall system and align with other technical projects.

Requirements:
• 5+ years in machine learning with hands-on model development experience;
• 2+ years in a technical leadership role;
• Practical experience with Git, Airflow and MLflow (or similar tools);
• Strong Python skills with experience using popular ML libraries and tools (sklearn, CatBoost, optuna, etc);

•Experience with cloud platforms (AWS, GCP, Azure), especially their ML and data engineering services;

• Advanced SQL skills and experience building/managing data pipelines with Airflow or similar tools;
• Understanding of MLOps practices, including CI/CD for ML;
• English level B2 or higher. 

Preferred Qualifications (Optional):
• Experience in healthcare or medical insurance projects;
• Experience with Google Cloud Platform (GCP). 

Benefits:

  • Flexible working hours; 
  • Remote work; 
  • Interesting projects to work on; 
  • Paid vacations.

#Li - remote

Related Jobs

View all jobs

Data Team Lead

German Speaking Team Lead - Credit Analyst

Team Lead - F1 Motorsport Tire R&D Engineer

Team Lead - F1 Motorsport Tire R&D Engineer

Team Lead - F1 Motorsport Tire R&D Engineer

Team Lead - F1 Motorsport Tire R&D Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.