Mid/Senior Data Scientist

Griffin Fire
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Economist/Data Scientist

Principal Data Scientist - Marketing

Machine Learning Manager

Machine Learning Engineering Manager

Analytics Engineering Manager

Remote .NET Developer

Are you passionate about data-driven innovation, building best-in-class data products, and delivering impactful business insights? Do you have strong technical expertise in Python, SQL, and experience in analysing and modeling data? Are you eager to work in a fast-paced, cross-functional team within an early-stage startup, where you can take ownership and actively shape our data strategy? If so, we would love to hear from you!

At Two, we are revolutionising B2B payments by bringing the best of B2C e-commerce to the B2B world. Our innovative, data-driven solutions empower businesses to sell more, faster, and more efficiently, creating a seamless commerce experience. With an impressive 30% month-on-month growth rate, our ambition is to become the world’s largest B2B payment solution by 2027.

Backed by leading VCs such as Sequoia, Shine, LocalGlobe, Antler, and Posten, along with influential Fintech angel investors, we’ve raised over €30 million to date. Now, we’re expanding our team to continue reshaping the future of B2B payments.


About the role:

We are looking for a Mid or Senior-Level Data Scientist to join our high-performing team, united by a passion for data excellence. This is an exciting opportunity to work in a dynamic, fast-paced environment, where data science plays a crucial role in risk management, fraud detection, customer behavior analytics, and automation of financial processes.

In this role, you will apply machine learning, advanced statistical techniques, and large-scale data processing to develop models that enhance our BNPL platform. You will work closely with Engineering, Risk, and Product teams to deploy scalable, data-driven solutions that fuel business growth.


Key Responsibilities:

  • Develop and deploy machine learning models to optimise credit risk assessment, fraud detection, and transaction automation.
  • Analyse large datasets to extract meaningful insights and drive data-informed decision-making.
  • Enhance our data pipelines and machine learning infrastructure, ensuring efficient model training and deployment.
  • Collaborate with engineering, product, and risk teams to integrate data science solutions into real-time production environments.
  • Conduct statistical analyses and A/B testing to validate hypotheses and improve model performance.
  • Continuously research and experiment with emerging techniques in machine learning, deep learning, and data analytics.


Minimum Requirements:

  • 3-5 years of experience in data science, machine learning, or a related field.
  • Strong programming skills in Python and SQL, with the ability to query databases and manipulate large datasets.
  • Proficiency in key Python libraries for data science, including Pandas, Scikit-learn, Statsmodels, NumPy, SciPy, Matplotlib, TensorFlow, and Keras.
  • Solid understanding of machine learning techniques, such as clustering, tree-based methods, boosting, text mining, and neural networks.
  • Expertise in statistical modeling and techniques such as regression, hypothesis testing, simulation, resampling methods, and stratification.
  • Degree in Data Science, Mathematics, Physics, Computer Science, Engineering, or another quantitative field (or equivalent experience).
  • Strong business acumen with a problem-solving mindset, ideally with experience in fintech or payments.
  • Excellent communication skills, with the ability to convey complex technical concepts to both technical and non-technical stakeholders.
  • Ability to work in a dynamic, fast-paced environment, adapting to changing priorities and objectives.


Benefits:

  • 25 days paid time off per year + public holidays.
  • £500 annual allowance to spend on anything that will contribute to your mental or physical health.
  • £500 allowance towards a phone device every 24 months (from your 6th month anniversary).
  • £500 annual allowance for learning and training.
  • Cycle to work scheme.
  • Enjoy a flexible work environment, balancing onsite and working from home.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.