Mid-Level Data Scientists Needed |Financial Services | Guildford Area

Guildford
1 month ago
Applications closed

Related Jobs

View all jobs

Mid-Level Data Scientist role  - Financial Services | Guildford

Electronics Engineer

Data Engineer (Airport/Manufacturing Experience Required)

Advanced Analytics & Reporting Analyst

Campaign Data Analyst

Mid Data Engineer (Sunderland)

Mid-Level Data Scientists Needed |Financial Services | Guildford Area

Are you a passionate data scientist with a knack for engineering solutions? Our established financial services client is seeking a talented Mid-Level Data Scientist to join their growing Analytics team at their office near Guildford.

About the Role:

Working in a Data Science role you will also perform some Data Engineering and Analysis tasks. You'll help transform complex financial data into actionable insights that drive business decisions. You'll collaborate with cross-functional teams to develop predictive models using a range of Data Science techniques. They are also planning to implement some Generative AI tools that optimize internal operations. They are still early in their Data Science journey and this will be area they are investing over the next few years so need people who can help shame their Data and AI tools.

Responsibilities:

  • Design, develop and implement predictive models and machine learning algorithms including building Gen-AI tools.

  • Build and maintain data pipelines to support analytical workflows

  • Transform raw financial data into structured formats suitable for analysis

  • Create visualizations and reports to communicate findings to stakeholders

  • Collaborate with business teams to understand requirements and deliver solutions

  • Optimize existing models and processes for improved performance

    Requirements:

  • 3+ years of experience in data science using a range of predictive modelling and Machine Learning techniques

  • Strong programming skills in Python and SQL

  • Experience with data engineering concepts and tools (ETL pipelines, data warehousing – they are using SnowFlake)

  • Knowledge of machine learning libraries and frameworks (e.g., scikit-learn, TensorFlow)

  • Bachelor's degree in Computer Science, Statistics, Mathematics, or related field

    Technical Skills:

  • Data manipulation: Pandas, NumPy

  • Data engineering: Snowflake, Apache Spark, Airflow or similar

  • Database management: SQL, NoSQL databases

  • Visualization: Power BI, Tableau, or equivalent

  • Version control: Git

    Salary: £45,000 - £65,000 DOE + good pension contribution + private medical + 25 days holiday + discretionary bonus

    Join their team and help shape business success through data-driven decision making.

    Location: Guildford area, Surrey Work Model: Hybrid (3 days in office, 2 days remote)

    APPLY TODAY for immediate consideration and interview in the next week

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!