Microsoft Data Solution Architect

Belfast
3 weeks ago
Create job alert

Microsoft Data Solutions Architect needed for a permanent opportunity for a leading Microsoft Partner.

Key Role Responsibilities

  • Articulate Data Value: Understand and communicate the value data brings to an organization in alignment with business goals.

  • Design and Development Leadership: Lead the design and development of data solutions, including coding, testing, and defect resolution.

  • Hands-on Development: Actively develop components of data solutions.

  • Requirement Identification: Identify and translate functional, technical, and non-functional requirements into user stories for the team.

  • Performance Management: Manage performance, optimize costs, and execute unit and integration testing for data pipelines and reports.

  • Customer and Team Advisory: Advise on effort estimation and technical implications of user stories, manage work breakdown from inception to delivery, and oversee the team's backlog.

  • Customer Relationship Management: Maintain key relationships with decision-makers, including CxOs, throughout project delivery.

  • Industry Trends Awareness: Stay updated on trends in data science and engineering, including techniques, competitors, partners, and technology.

  • Continuous Improvement: Promote best practices and continuous improvement in data solutions.

  • Ability to do a Tender

    Education, Qualifications, and Skills

  • Experience: 5+ years in data roles.

  • Technical Skills:

    • Development experience with Microsoft (Azure) technologies, including Azure Data Factory, Synapse, and Power BI, or relevant ETL tools.

    • Expertise in Microsoft Fabric or Databricks

    • Experience with technology partners or consulting organizations is highly desirable.

    • Leadership experience in technical teams (engineers, analysts, architects) for data-intensive systems.

    • Proficiency in SQL or SQL extensions for analytical use cases.

    • Deep understanding of distributed data stores and data processing frameworks.

    • Ability to communicate technical designs clearly, both written and verbally.

    • Proficiency in designing analytical and operational data models.

    • Background in Data Architecture, Engineering, or Analytics with knowledge of modern enterprise architecture patterns.

    • Proven track record in delivering data-oriented solutions, including data warehousing, operational insight, data management, or business intelligence.

  • Certifications: Azure/Databricks data certifications are desirable.

    If you want the opportunity to take your career to the next level, please apply now

Related Jobs

View all jobs

Data & AI Solution Architect, Azure, Remote

Data Architect - Contract

Senior Data Consultant

Data Engineer - UK Perm - Manchester Hrbrid

Senior Data Analyst

Senior Data Engineer - MS Azure

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.