National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Microsoft Data Solution Architect

Belfast
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer (Maximo)

Azure Data Engineer

Data Analytics Service Delivery Manager

GCP Data Solutions Architect

Senior Data Engineer

Data Engineer

Microsoft Data Solutions Architect needed for a permanent opportunity for a leading Microsoft Partner.

Key Role Responsibilities

  • Articulate Data Value: Understand and communicate the value data brings to an organization in alignment with business goals.

  • Design and Development Leadership: Lead the design and development of data solutions, including coding, testing, and defect resolution.

  • Hands-on Development: Actively develop components of data solutions.

  • Requirement Identification: Identify and translate functional, technical, and non-functional requirements into user stories for the team.

  • Performance Management: Manage performance, optimize costs, and execute unit and integration testing for data pipelines and reports.

  • Customer and Team Advisory: Advise on effort estimation and technical implications of user stories, manage work breakdown from inception to delivery, and oversee the team's backlog.

  • Customer Relationship Management: Maintain key relationships with decision-makers, including CxOs, throughout project delivery.

  • Industry Trends Awareness: Stay updated on trends in data science and engineering, including techniques, competitors, partners, and technology.

  • Continuous Improvement: Promote best practices and continuous improvement in data solutions.

  • Ability to do a Tender

    Education, Qualifications, and Skills

  • Experience: 5+ years in data roles.

  • Technical Skills:

    • Development experience with Microsoft (Azure) technologies, including Azure Data Factory, Synapse, and Power BI, or relevant ETL tools.

    • Expertise in Microsoft Fabric or Databricks

    • Experience with technology partners or consulting organizations is highly desirable.

    • Leadership experience in technical teams (engineers, analysts, architects) for data-intensive systems.

    • Proficiency in SQL or SQL extensions for analytical use cases.

    • Deep understanding of distributed data stores and data processing frameworks.

    • Ability to communicate technical designs clearly, both written and verbally.

    • Proficiency in designing analytical and operational data models.

    • Background in Data Architecture, Engineering, or Analytics with knowledge of modern enterprise architecture patterns.

    • Proven track record in delivering data-oriented solutions, including data warehousing, operational insight, data management, or business intelligence.

  • Certifications: Azure/Databricks data certifications are desirable.

    If you want the opportunity to take your career to the next level, please apply now
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.