Marketing Analyst

83data
Sheffield
10 months ago
Applications closed

Related Jobs

View all jobs

Marketing Data Analyst - Hybrid, Impact & Insights

Marketing Data Analyst – Insights & Automation (Hybrid)

Marketing Data Analyst - Hybrid Insights & Automation

Senior Data Analyst (Marketing Analytics)

Mobile App Marketing Data Analyst

Mobile App Marketing Data Analyst

Marketing Analyst - Remote UK


We are seeking a Marketing Data Analyst who is analytical, insightful, and eager to take on a pivotal role in defining the client’s marketing strategy. If you have a proven ability to unearth the compelling stories that data hides, and can leverage these insights to drive successful marketing initiatives, this could be the perfect role for you.



Role Overview:As a Marketing Data Analyst, you will be integral to the marketing team, providing the insights needed to guide strategic decision-making. Your role will involve analysing marketing performance, identifying trends, and translating data into strategic actions that enhance customer acquisition, engagement, and retention.



Key Responsibilities:

  • Data Analysis:Perform detailed analyses across various data sources, including website analytics, marketing campaigns, and CRM systems.
  • Strategy Development:Work in close collaboration with the marketing team to craft and refine effective strategies based on data-driven insights.
  • Reporting and Dashboards:Develop and maintain comprehensive reports and dashboards that highlight key metrics and insights for stakeholders.
  • Campaign Evaluation:Assess the efficacy of marketing campaigns, providing optimisation recommendations.
  • Cross-Functional Collaboration:Ensure alignment across marketing, product, and sales teams to maximise strategic outcomes.
  • Keeping Informed:Remain up-to-date with the latest trends in marketing analytics and data visualisation tools.



Desired Skills and Experience:

  • Analytical Skills:Strong background in data analysis, proficient in tools like GA4, SQL, Looker Studio, and BigQuery.
  • Marketing Knowledge:Deep understanding of modern marketing strategies, particularly within digital campaigns and product-led growth, with a strong preference for candidates who have experience in software or SaaS environments.
  • Communication:Exceptional ability to communicate complex data insights clearly to both technical and non-technical stakeholders.
  • Problem Solving:Proactive in identifying and resolving issues with a solution-focused approach.
  • Teamwork:Excellent collaborative skills, able to work effectively within diverse team settings.



Additional Qualifications (Preferred):

  • Prior experience in SaaS or B2B marketing analytics is highly advantageous.



Rewards and Benefits:

  • Competitive Compensation:We offer competitive salaries and comprehensive benefits packages, including health care, generous holiday allowances, and a home office setup budget.
  • Equity Opportunities:Our client believes in rewarding top performers with share options.
  • Dynamic Work Environment:Enjoy a vibrant culture with regular team-building events, fun activities, and a strong focus on employee wellbeing.
  • Community Engagement:Opportunities for volunteering and community involvement are encouraged and supported.



Work Flexibility and Diversity:The client promotes a remote-first approach, providing equal opportunities to all employees globally. They are committed to creating a diverse and inclusive work environment and welcome applicants who may require specific accommodations to participate fully in the recruitment process.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.