Market Data Analyst

S4 Market Data
London
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Market Data Analyst - Client & Ops Leader

Market Research - Data Analyst

Market Research Data Analyst – Quant & Analytics

Market Research - Data Analyst

Senior MI & Data Analyst

Senior MI & Data Analyst

Summary:PLEASE NOTE - This is NOT a technical role for a Data Analyst, Data Scientist or someone with an IT background. Candidates MUST have experience in the Market Data realm and be able to administer Market Data contracts. Please read the description before you applyThe Market Data Analyst at S4 Market Data will oversee client projects and be responsible for the overall service delivery of our managed services with respective clients. This position will manage market data service inquiries and projects from clients as well as manage a market data administrator within the projects to ensure administrative tasks are being completed in an accurate and timely manner. The ideal candidate will have market data vendor management and administrative experience; sourcing and negotiating contracts, managing procurement/sourcing requests throughout the spend life cycle, speaking with internal business units and stakeholders (legal, finance, IT, etc.) to procure goods/services for our clients.  The candidate needs to be located in the US, this is a fully remote position. Responsibilities: Handle day-to-day demand management or vendor management and administrative inquiries from internal business units, including but not limited to; data/sourcing requests, contract negotiation, entitlement administration, exchange reporting, moves/adds/changes requests, inventory management, procurement/legal approval, expense allocation, invoices reconciliation, and spend reporting. Interact with the client’s various internal stakeholders and business units; technology, legal, accounting/finance, human resources, and investment managers. Oversee the inventory management process of leavers/joiners, ensure current inventory is accurate and up-to-date. Oversee the reconciliation invoices and validation of monthly allocations/expenses. Conduct monthly/quarterly exchange reporting and ensure exchange policies and data compliance across the client’s end-users and applications.  Administer their datafeeds (EMRS, DACS, Etc.) Review spend and enact cost savings and avoidance initiatives. Provide respective business units with an overview for their costs; understand their products/services and respond to any inquires as needed. Maintain reports on costs and identify ways to consolidate spend. Conducts regular internal team meetings to report on client SLA’s and to ensure all client service deliverables are being met and completed. Qualifications: Bachelor’s degree in MIS, Business, or related degree and 3-5 years of relevant experience in financial services or market data. Relevant work experience in consulting is preferred. Experience working with Market Data vendors such as Bloomberg, FactSet, Exchanges (NYSE, ICE, etc.). Knowledge of FITS and MDSL inventory systems is preferred. Excellent communication and project management skills and experience in working closely with internal client business units and senior stakeholders. An entrepreneurial and self-regulating mind-set. Display a high level of time management skills to manage multiple and elaborate requests simultaneously. Have high energy and be a self-starter with the ability to work independently and as part of a team. Powered by JazzHR

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.