Machine Learning Research Engineer

Knauf Energy Solutions
London
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Research Engineer - NLP / LLM

Machine Learning Research Engineer - NLP / LLM

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Would you thrive in a fast-scaling business, solving novel problems in collaborative teams? Are you interested in developing machine learning products from conception to deployment? If so, you could be the person we are searching for. 


We are an IoT innovator working to scale our product deployments across the UK and EU. We are passionate about developing technology that will change paradigms and contribute to a sustainable future. We are building Virtual Energy Infrastructure using our world-leading machine learning algorithms.


We’re looking for a Machine Learning Research Engineer to work with us in our Data Science and AI Team. In this team, we build custom algorithms that use novel approaches to solve our business needs. You will be working with large, complex, and unique datasets to solve a wide range of difficult statistical, mathematical, and physical engineering problems. 


To achieve this, you will work with cutting-edge technologies in a highly collaborative environment. Key to this role is the ability to envision and design new algorithm products while carefully considering the practicality of rollout, wider strategic implications, and any legal or ethical considerations – and then taking these products from conception to deployment.


This will require strong software engineering expertise and excellent machine learning proficiency. The ideal candidate brings not just technical skills, but an intellectual curiosity and eagerness to expand their knowledge across diverse technical domains.


You will be working with an enthusiastic, agile and highly skilled team to deliver a paradigm-changing technology across Europe with a positive environmental and social impact. Our world-leading algorithmic products are at the core of our business, so as a part of the Data Science and AI Team, you will have a high level of exposure to the wider business. 


Flexible start date


This role is based in our London office, near Liverpool Street (hybrid in-office and work-from-home). 


Experience Level:

  • Hiring at a range of experience levels; 0-4 years of experience


We are looking for:

  • MSc/MSci in a highly quantitative field (Mathematics, Computer Science, Physics, etc)
  • Strong knowledge of Python and appropriate Machine Learning libraries and frameworks
  • Strong analytical and communication skills 
  • Experience using Machine Learning on large datasets 
  • Experience collating, cleaning and visualizing datasets 
  • Ability to work autonomously, conducting research and posing difficult questions in order to build scalable algorithmic solutions to hard problems from the ground up 
  • Enthusiasm to learn and contribute to a culture of learning  
  • Advantageous - PhD (in a highly quantitative field)


What we offer

  • Competitive salary
  • Generous annual leave allowance, excellent benefits package including salary sacrifice car scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.