Machine Learning Ops Engineer

Cloud Bridge
Greater London
8 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer...

We are seeking an experienced MLOps Engineer to bridge the gap between machine learning models and production environments. As an MLOps Engineer, you will be responsible for building, deploying, and maintaining scalable machine learning infrastructure in AWS. You will work closely with data scientists, DevOps teams, and software engineers to ensure that machine learning models can be successfully operationalised, monitored, and updated in real-time environments.

Key Responsibilities:

  • Design and deploy scalable machine learning pipelines using AWS services (SageMaker, Lambda, ECS/EKS, DynamoDB) and automate infrastructure with CloudFormation, Terraform, or AWS CDK.
  • Implement robust monitoring for model performance and drift with tools like CloudWatch, SageMaker Model Monitor, ensuring models meet business and compliance requirements.
  • Automate the full machine learning lifecycle, integrating models into CI/CD pipelines (CodePipeline, Jenkins, GitLab CI) for seamless deployment and version control.
  • Collaborate with data scientists and engineers to transition models from development to production, optimizing workflows and resource usage.
  • Manage and optimize data pipelines, ensuring data is available for training, testing, and inference at scale, supporting model performance improvements.
  • Design cloud-native, cost-efficient machine learning solutions that scale based on real-time data and increasing workloads.

Required Skills & Experience:

  • Hands-on experience with AWS services such as SageMaker, Lambda, EKS, EC2, CloudFormation, and DynamoDB for deploying and managing machine learning models.
  • Proficiency in containerization (Docker, Kubernetes) and automating ML pipelines using CI/CD tools like CodePipeline, Jenkins, and GitLab CI.
  • Experience with model versioning tools (MLflow, DVC, SageMaker Model Registry) and automating data workflows to ensure data availability and traceability.
  • Strong background in Python, Bash, and scripting to automate model management, training, and deployment processes.
  • Knowledge of cloud infrastructure security practices, including data privacy, model security, and compliance standards like GDPR and SOC 2.
  • Familiarity with AWS big data tools (Redshift, Glue, EMR) for processing large datasets to support machine learning models.

Preferred Qualifications:

  • AWS Certified Machine Learning – Specialty or other relevant certifications.
  • Experience with machine learning deployment frameworks (TensorFlow Serving, Kubeflow, MLflow) and managing containerized workloads with ECS/EKS.
  • Deep understanding of data privacy regulations, model security, and designing solutions that are compliant with industry standards.
  • Background in machine learning libraries such as TensorFlow, PyTorch, or XGBoost for model development and training.
  • Familiarity with serverless computing for ML workflows using AWS Lambda and API Gateway, and multi-cloud environments.

If you are a skilled MLOps Engineer with a passion for automating machine learning pipelines, deploying models at scale, and optimizing cloud-based infrastructures, we’d love to hear from you!

#CBTR

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.