Machine Learning Manager, London

Bjak
London
3 weeks ago
Create job alert

BJAKis an internet company with deep expertise in automation, having built Southeast Asia's largest insurance aggregator. Leveraging our strength in advanced browser automation, we’re now launching a global AI solution designed to simplify life through intelligent task automation.

Based in Malaysia, our AI product is uniquely positioned to serve global markets, and we’re at an exciting stage in our journey. Our mission is to ensure that the benefits of AI reach everyone, everywhere, creating a world where intelligent task automation enhances human productivity and makes life easier.

Our team is goal-driven, highly motivated, and focused on delivering exceptional products that delight users. We operate with a flat organizational structure where ownership, initiative, and excellence are key to growth. Leadership opportunities are earned by those who consistently deliver outstanding results and show initiative. At BJAK, there are no limits to growth—if you're inspired by meaningful challenges, hands-on contributions, and rapid career advancement, you'll thrive here.

Join us in building innovations that simplify life and shape the future of AI.

Key Responsibilities:

  • Lead and mentor a team of AI engineers, providing technical guidance, coaching, and fostering their growth.
  • Collaborate with product managers and stakeholders to define AI project objectives, requirements, and timelines.
  • Design, develop, and implement AI models, algorithms, and applications to solve complex business challenges.
  • Oversee the end-to-end AI model lifecycle, including data collection, preprocessing, model training, evaluation, and deployment.
  • Stay updated with the latest advancements in AI and machine learning, incorporating best practices into projects.
  • Drive data-driven decision-making through advanced analytics and visualization techniques.
  • Ensure the security, scalability, and efficiency of AI solutions.
  • Lead research efforts to explore and integrate cutting-edge AI techniques.

Requirements

  • Bachelor's, Master's, or Ph.D. in Computer Science, Artificial Intelligence, or a related field.
  • Proven experience as an AI engineer or data scientist, with a track record of leading successful AI projects.
  • Proficiency in AI and machine learning frameworks and programming languages (e.g., Python).
  • Strong expertise in data preprocessing, feature engineering, and model evaluation.
  • Excellent problem-solving and critical-thinking skills.
  • Effective leadership, communication, and team management abilities.
  • A passion for staying at the forefront of AI and machine learning advancements.

Benefits

  • Fast moving, challenging and unique business problems
  • Attractive remuneration and performance incentives
  • Strong learning and development plans for your career growth
  • Great career development opportunities in a growing company
  • International work environment and flat organization
  • Competitive salary

Related Jobs

View all jobs

Machine Learning Manager

Machine Learning Engineering Manager

Senior Machine Learning Product Manager (Deploy)

Marketing Machine Learning Engineer

Data Science Manager

Senior Product Manager - AI, ML & Data Science

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.