Machine Learning Engineer- World-Leading Prop Trading Fund - Oxford Knight

Jobs via eFinancialCareers
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer- World-Leading Prop Trading Fund

About the Position

My client is seeking an engineer with robust experience in machine learning and strong mathematical foundations to join their growing ML team and to help drive the direction of the ML platform.

Machine learning is a critical pillar of the fund's global business. The ever-evolving trading environment serves as a unique, rapid-feedback platform for ML experimentation, allowing new ideas to be incorporated with relatively little friction. The ML team is full of people with a shared love for the craft of software engineering, and for designing APIs and systems that are delightful to use.

You'll draw on your in-depth knowledge of the ML ecosystem and understanding of varying approaches - whether it's neural networks, random forests, gradient-boosted trees, or sophisticated ensemble methods - to aid decision-making so that the right tool is applied for the problem at hand. Your work will also focus on enhancing research workflows to tighten feedback cycles. Successful ML engineers will be able to understand the mechanics behind various modeling techniques, while also being able to break down the mathematics behind them.

If you've never thought about a career in finance, you're in good company. Many of the employees were in the same position before working at this firm. While there isn't a fixed list of qualifications they're looking for, if you have a curious mind and a passion for solving interesting problems, you'll almost certainly fit right in.

Requirements:

  1. Experience building and maintaining training and inference infrastructure, with an understanding of what it takes to move from concept to production
  2. A strong mathematical background; good candidates will be excited about things like optimization theory, regularization techniques, linear algebra, and the like
  3. A passion for keeping up with the state of the art, whether that means diving into academic papers, experimenting with the latest hardware, or reading the source of a new machine learning package
  4. A proven ability to create and maintain an organized research codebase that produces robust, reproducible results while maintaining ease of use
  5. Expertise wrangling an ML framework - they're fans of PyTorch, but they'd also love to learn what you know about Jax, TensorFlow, or others
  6. An inventive approach and the willingness to ask hard questions about whether the right approaches are being taken and the right tools being used



Contact
If this sounds like you, or you'd like more information, please get in touch:

George Hutchinson-Binks

(+44)
linkedin.com/in/george-hutchinson-binks-a62a69252

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.