Machine Learning Engineer- World-Leading Prop Trading Fund - Oxford Knight

Jobs via eFinancialCareers
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer- World-Leading Prop Trading Fund

About the Position

My client is seeking an engineer with robust experience in machine learning and strong mathematical foundations to join their growing ML team and to help drive the direction of the ML platform.

Machine learning is a critical pillar of the fund's global business. The ever-evolving trading environment serves as a unique, rapid-feedback platform for ML experimentation, allowing new ideas to be incorporated with relatively little friction. The ML team is full of people with a shared love for the craft of software engineering, and for designing APIs and systems that are delightful to use.

You'll draw on your in-depth knowledge of the ML ecosystem and understanding of varying approaches - whether it's neural networks, random forests, gradient-boosted trees, or sophisticated ensemble methods - to aid decision-making so that the right tool is applied for the problem at hand. Your work will also focus on enhancing research workflows to tighten feedback cycles. Successful ML engineers will be able to understand the mechanics behind various modeling techniques, while also being able to break down the mathematics behind them.

If you've never thought about a career in finance, you're in good company. Many of the employees were in the same position before working at this firm. While there isn't a fixed list of qualifications they're looking for, if you have a curious mind and a passion for solving interesting problems, you'll almost certainly fit right in.

Requirements:

  1. Experience building and maintaining training and inference infrastructure, with an understanding of what it takes to move from concept to production
  2. A strong mathematical background; good candidates will be excited about things like optimization theory, regularization techniques, linear algebra, and the like
  3. A passion for keeping up with the state of the art, whether that means diving into academic papers, experimenting with the latest hardware, or reading the source of a new machine learning package
  4. A proven ability to create and maintain an organized research codebase that produces robust, reproducible results while maintaining ease of use
  5. Expertise wrangling an ML framework - they're fans of PyTorch, but they'd also love to learn what you know about Jax, TensorFlow, or others
  6. An inventive approach and the willingness to ask hard questions about whether the right approaches are being taken and the right tools being used



Contact
If this sounds like you, or you'd like more information, please get in touch:

George Hutchinson-Binks

(+44)
linkedin.com/in/george-hutchinson-binks-a62a69252

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.