Machine Learning Engineer (UK) (Basé à London)

Jobleads
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Started in 2021, Coram.AI is building the best business AI video system on the market. Powered by the next-generation video artificial intelligence, we deliver unprecedented insights and 10x better user experience than the incumbents of the vast but stagnant video security industry.

Our customers range from warehouses, schools, hospitals, hotels, and many more, and we are growing rapidly. We are looking for someone to join our team to help us scale our systems to meet the user demand and to ship new features.

Team you will work with

Founded by Ashesh (CEO) and Peter (CTO), we are serial entrepreneurs and experts in AI and robotics. Our engineering team is composed of industry experts with decades of research and experience from Lyft, Google, Zoox, Toyota, Facebook, Microsoft, Stanford, Oxford, and Cornell. Our go-to-market team consists of experienced leaders from Verkada. We are venture-backed by 8VC + Mosaic, revenue-generating, and have multiple years of runway.

Being part of our team means solving interesting problems at the intersection of user experience, machine learning and infrastructure. It also means committing to excellence, learning, and delivering great products to our customers in a high-velocity startup.

The role

We are hiring a Machine Learning engineer.

  • Take an existing open-source Pytorch model, fine-tune, productionize them in C++ runtime, and optimize for latency and throughput.
  • Take an open-source model and fine-tune them on our in-house data set as needed.
  • Design thoughtful experiments in evaluating the tradeoffs between latency and accuracy on the end customer use case.
  • Integrate the model with the downstream use case and fully own the end metrics.
  • Maintain and improve all existing ML applications in the product.
  • Read research papers and develop ideas on how they could be applied to video security use cases, and convert those ideas to working code.

Requirements

  • You should be a good software engineer who enjoys writing production-grade software.
  • Strong machine learning fundamentals (linear algebra, probability and statistics, supervised and self-supervised learning).
  • Keeping up with the latest in deep learning research, reading research papers, and familiarity with the latest developments in foundation models and LLMs.
  • (Good to have) Comfortable with productionizing a Pytorch model developed in C++, profiling the model for latency, finding bottlenecks, and optimizing them.
  • Good understanding of docker and containerization.
  • (Good to have) Experience with Pytorch and Python3, and comfortable with C++.
  • (Good to have) Understanding of Torch script, ONNX runtime, TensorRT.
  • (Good to have) Understanding of half-precision inference and int8 quantization.

What we offer

  • Company equity % in an early-stage startup.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.