Machine Learning Engineer, Sr.

ORB Sport
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer Python AWS

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

What you’ll be working on

Research, develop, and implement machine learning algorithms for use in software and hardware applications.

Your day-to-day

  1. Leads complex model development projects to introduce advanced machine learning techniques and algorithms, ensuring integration with production systems. Lead problem-solving efforts across projects.
  2. Architects and optimises data infrastructure to support scalable machine learning applications.
  3. Drives strategic decisions in project and product meetings, ensuring alignment of machine learning goals with business objectives.
  4. Spearheads initiatives, piloting and integrating new technologies into the business workflow.
  5. Drives innovation through advanced research projects, leading to patentable technology and publications.
  6. Mentor team members in machine learning and advanced troubleshooting techniques to ensure that best practices are followed.
  7. Executes end-to-end machine learning model development from ideation to deployment. Optimises model performance and scalability.
  8. Builds, deploys, monitors, and continuously optimises ML models and developing automated ML models’ training and inference pipelines.
  9. Develops training and cross-validation data sets for machine learning algorithms.
  10. Translates product management, engineering and business constraints and queries into tractable data science questions.
  11. Designs and maintains robust data pipelines for real-time data processing and analysis.
  12. Leads the troubleshooting of complex data challenges.
  13. Develops frameworks and tools to improve model performance and insights.
  14. Performs other related duties and projects as business needs require at direction of management.

You should apply if

  1. Bachelor’s degree in Computing Science, Data Science, Machine Learning, Applied Mathematics, Statistics, or related field; or any equivalent education and/or experience from which comparable knowledge, skills and abilities have been demonstrated/achieved. Master’s degree preferred.
  2. Minimum seven (7) years of experience in Machine Learning.

Even better if you have

  1. Certification in Machine Learning libraries such as Tensorflow, PyTorch, Scikit-learn, NumPy, and Pandas preferred.

Pay range: Competitive

Hybrid work schedule

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.