Machine Learning Engineer (RL)

AgileRL Ltd
City of London
3 days ago
Create job alert
Machine Learning Engineer (Reinforcement Learning)

We are seeking a talented and experienced Machine Learning Engineer with a background in Reinforcement Learning to join our team. This engineer will contribute to the further development of Arena, a web-based software platform for reinforcement learning training and RLOps, and our open-source reinforcement learning library.


Responsibilities

  • Collaborate with the team to understand requirements and design new features of the Arena platform and open-source framework.
  • Develop scalable and reliable infrastructure to support reinforcement learning model training, LLM finetuning, model deployment, and management.
  • Integrate existing machine learning frameworks and libraries into the platform and open-source framework, providing a range of algorithms, environments, and tools for reinforcement learning model development.
  • Stay up-to-date with the latest advancements in AI, MLOps, reinforcement learning algorithms, tools, and techniques, and incorporate them into the platform as appropriate.
  • Provide technical guidance and support to internal users and external customers using the Arena platform and open-source framework.

Requirements

  • Master’s or Ph.D. degree in Computer Science, Engineering, or a related field, or 3+ years of relevant industry experience.
  • Solid understanding of reinforcement learning algorithms and concepts, with hands‑on experience in building and training reinforcement learning models.
  • Strong programming skills, with experience using reinforcement learning and ML frameworks and libraries (e.g. PyTorch, TensorFlow, Ray, Gym, RLLib, SB3, TRL), and MLOps tools.
  • Solid understanding of hyperparameter optimisation techniques and strategies.
  • Experience in building machine learning platforms or tooling for industrial or enterprise settings.
  • Proficiency in data management techniques, including storage, retrieval, and pre‑processing of large‑scale datasets.
  • Familiarity with model deployment and management, including the development of APIs, deployment pipelines, and performance optimisation.
  • Experience in designing and developing cloud‑based infrastructure for distributed computing and scalable data processing.
  • Deep understanding of software engineering and machine learning principles and best practices.
  • Strong problem‑solving and communication skills, and the ability to work independently as well as in a team environment.

Compensation

  • Competitive salary + significant stock options.
  • 30 days of holiday, plus bank holidays, per year.
  • Flexible working from home and 6-month remote working policies.
  • Enhanced parental leave.
  • Learning budget of £500 per calendar year for books, training courses and conferences.
  • Company pension scheme.
  • Regular team socials and quarterly all‑company parties.
  • Bike2Work scheme.

Join the fast‑growing AgileRL team and play a key role in the development of cutting‑edge reinforcement learning tooling and infrastructure.


Apply below


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.