Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer (Reinforcement Learning) London, UK

AgileRL Ltd
City of London
3 days ago
Create job alert
Machine Learning Engineer (Reinforcement Learning)

We are seeking a talented and experienced Machine Learning Engineer with a background in Reinforcement Learning to join our team. This engineer will contribute to the further development of Arena, a web-based software platform for reinforcement learning training and RLOps, and our open-source reinforcement learning library.


Responsibilities

  • Collaborate with the team to understand requirements and design new features of the Arena platform and open-source framework.
  • Develop scalable and reliable infrastructure to support reinforcement learning model training, LLM finetuning, model deployment, and management.
  • Integrate existing machine learning frameworks and libraries into the platform and open-source framework, providing a range of algorithms, environments, and tools for reinforcement learning model development.
  • Stay up-to-date with the latest advancements in AI, MLOps, reinforcement learning algorithms, tools, and techniques, and incorporate them into the platform as appropriate.
  • Provide technical guidance and support to internal users and external customers using the Arena platform and open-source framework.

Requirements

  • Master’s or Ph.D. degree in Computer Science, Engineering, or a related field, or 3+ years of relevant industry experience.
  • Solid understanding of reinforcement learning algorithms and concepts, with hands‑on experience in building and training reinforcement learning models.
  • Strong programming skills, with experience using reinforcement learning and ML frameworks and libraries (e.g. PyTorch, TensorFlow, Ray, Gym, RLLib, SB3, TRL), and MLOps tools.
  • Solid understanding of hyperparameter optimisation techniques and strategies.
  • Experience in building machine learning platforms or tooling for industrial or enterprise settings.
  • Proficiency in data management techniques, including storage, retrieval, and pre‑processing of large‑scale datasets.
  • Familiarity with model deployment and management, including the development of APIs, deployment pipelines, and performance optimisation.
  • Experience in designing and developing cloud‑based infrastructure for distributed computing and scalable data processing.
  • Deep understanding of software engineering and machine learning principles and best practices.
  • Strong problem‑solving and communication skills, and the ability to work independently as well as in a team environment.

Compensation

  • Competitive salary + significant stock options.
  • 30 days of holiday, plus bank holidays, per year.
  • Flexible working from home and 6-month remote working policies.
  • Enhanced parental leave.
  • Learning budget of £500 per calendar year for books, training courses and conferences.
  • Company pension scheme.
  • Regular team socials and quarterly all‑company parties.
  • Bike2Work scheme.

Join the fast‑growing AgileRL team and play a key role in the development of cutting‑edge reinforcement learning tooling and infrastructure.


Apply below


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.