Machine Learning Engineer (Reinforcement Learning) London, UK

AgileRL Ltd
City of London
20 hours ago
Create job alert
Machine Learning Engineer (Reinforcement Learning)

We are seeking a talented and experienced Machine Learning Engineer with a background in Reinforcement Learning to join our team. This engineer will contribute to the further development of Arena, a web-based software platform for reinforcement learning training and RLOps, and our open-source reinforcement learning library.


Responsibilities

  • Collaborate with the team to understand requirements and design new features of the Arena platform and open-source framework.
  • Develop scalable and reliable infrastructure to support reinforcement learning model training, LLM finetuning, model deployment, and management.
  • Integrate existing machine learning frameworks and libraries into the platform and open-source framework, providing a range of algorithms, environments, and tools for reinforcement learning model development.
  • Stay up-to-date with the latest advancements in AI, MLOps, reinforcement learning algorithms, tools, and techniques, and incorporate them into the platform as appropriate.
  • Provide technical guidance and support to internal users and external customers using the Arena platform and open-source framework.

Requirements

  • Master’s or Ph.D. degree in Computer Science, Engineering, or a related field, or 3+ years of relevant industry experience.
  • Solid understanding of reinforcement learning algorithms and concepts, with hands‑on experience in building and training reinforcement learning models.
  • Strong programming skills, with experience using reinforcement learning and ML frameworks and libraries (e.g. PyTorch, TensorFlow, Ray, Gym, RLLib, SB3, TRL), and MLOps tools.
  • Solid understanding of hyperparameter optimisation techniques and strategies.
  • Experience in building machine learning platforms or tooling for industrial or enterprise settings.
  • Proficiency in data management techniques, including storage, retrieval, and pre‑processing of large‑scale datasets.
  • Familiarity with model deployment and management, including the development of APIs, deployment pipelines, and performance optimisation.
  • Experience in designing and developing cloud‑based infrastructure for distributed computing and scalable data processing.
  • Deep understanding of software engineering and machine learning principles and best practices.
  • Strong problem‑solving and communication skills, and the ability to work independently as well as in a team environment.

Compensation

  • Competitive salary + significant stock options.
  • 30 days of holiday, plus bank holidays, per year.
  • Flexible working from home and 6-month remote working policies.
  • Enhanced parental leave.
  • Learning budget of £500 per calendar year for books, training courses and conferences.
  • Company pension scheme.
  • Regular team socials and quarterly all‑company parties.
  • Bike2Work scheme.

Join the fast‑growing AgileRL team and play a key role in the development of cutting‑edge reinforcement learning tooling and infrastructure.


Apply below


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.