National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer (Multimodal)

Harnham
London
9 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (Multimodal) Up to £100,000 London Hybrid/Remote Driving innovation with AI and machine learning to revolutionize financial services and enhance customer experiences. COMPANY Harnham has partnered with a leading Fintech company using advanced AI technology to transform financial services. Their cutting-edge approach has led to the development of innovative financial solutions, making significant strides in areas such as fraud detection, personalized financial advice, and risk management. ROLE: Lead the development of AI algorithms, focusing on AI/ML techniques and Large Language Models (LLMs) to drive innovation in financial services. Build and test machine learning models, advocate for best coding practices, and ensure high-quality results through thorough testing. Collaborate closely with data scientists, financial analysts, and engineers to develop and implement AI/ML tools for data analysis. Leverage expertise in multimodal LLMs, especially in search and retrieval-augmented generation (RAG) technologies, to enhance model performance and application in financial contexts. YOUR SKILLS AND EXPERIENCE: MSc or PhD in a STEM subject. Proven experience with the implementation of Machine Learning models and Large Language Models, including multimodal LLMs. MLOps/DevOps experience with CI/CD pipelines. Proficiency in TensorFlow, Kubernetes, MLFlow, Kafka, and Airflow. Strong Python skills are essential; experience with AWS and Spark is beneficial. Excellent communication skills and experience engaging with team members and stakeholders. Expertise in large-scale computation and experience in a research or tech-driven environment. Familiarity with LLMs and tools like Langchain, with specific exposure to search and retrieval-augmented generation (RAG) technologies. Keen interest in financial technology and the Fintech space. BENEFITS: Salary up to £100,000 Bonus Healthcare & Pension HOW TO APPLY: Please register your interest by sending your CV to Luc Simpson-Kent via the link on this page.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.