Machine Learning Engineer London [Apply Now]

DARE
London
1 week ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - Fintech – Remote...

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

City of London Permanent, Full-time - Onsite Who weare: We are an energy trading company generating liquidity acrossglobal commodities markets. We combine deep trading expertise withproprietary technology and the power of data science to be thebest-in-class. Our understanding of volatile, data-intensivemarkets is a key part of our edge. At Dare, you will be joining ateam of ambitious individuals who challenge themselves and eachother. We have a culture of empowering exceptional people to becomethe best version of themselves. What you’ll be doing: The MachineLearning Engineer role is a key role within the technical space atDare. Working closely with a talented technical team to build aplatform that delivers ML capabilities to our Liquidity tradingteams. These teams are responsible for delivering products forinternal customers. Setting and delivering a consistent, scalableapproach to machine learning across the organisation is one of thekey success criteria for this role. The role requires buildingrelationships and collaborating with Senior Leaders across thebusiness to shape a strategy that delivers models that provide ourtraders with a competitive edge. - Using Dare’s proprietary tradingdata and models to drive trading PNL. - Developing tradingindicators and strategies powered by machine learning. - Partneringwith quantitative research and algorithmic trading technologyteams. - Collaborating with the CEO and other senior stakeholdersto combine domain knowledge with engineering expertise. What you’llbring - 3+ years experience in machine learning algorithms,software engineering, and data mining models with an emphasis onlarge language models (LLM). - A background in maths, statistics,and algorithms, with the capability to write robust scalable Pythoncode. - A strong understanding of the mathematical and statisticalfundamentals on which the ML methods are based. We want someone whounderstands the methods rather than just calling functions fromexisting ML packages. - Experience with production data processing.That includes data manipulation, data cleansing, aggregation,efficient (pre-)processing, etc. - Experience with time-seriesdata, including storage and management. - A strong understandingthrough the usage of machine learning frameworks (TenserFlow,PyTorch, sci-kit-learn, Huggingface). - Ability to work withanalytical teams to build dashboards that prove the value of themachine learning capabilities as we deliver models to ourproduction environments. Desirable: - Experience working withreal-time data systems. - Experience working with cloud-basedsolutions. Benefits & perks: - Competitive salary - Vitalityhealth insurance and dental cover - 38 days of holiday (includingbank holidays) - Pension scheme - Annual Bluecrest health checks -A personal learning & development budget of £5000 - Free gymmembership - Specsavers vouchers - Enhanced family leave - Cycle toWork scheme - Credited Deliveroo dinner account - Office massagetherapy - Freshly served office breakfast twice a week - Fullystocked fridge and pantry - Social events and a games roomDiversity matters: We believe in a workplace where our people canfulfill their potential, whatever their background or whomever theyare. We celebrate the breadth of experience and see this ascritical to problem-solving and to Dare thriving as a business. Ourculture rewards curiosity and drive, so the best ideas triumph andeveryone here can make an impact. Please let us know ahead of theinterview and testing processes if you require any reasonableadjustments or assistance during the application process. We’realso proud to be certified a ‘Great Place to Work’. Read more aboutour culture and what our team says about us here.#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!