National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer (London)

Kingfisher
London
5 days ago
Create job alert

Overview

We're Kingfisher, A team made up of over 76,000 passionate people who bring Kingfisher - and all our other brands: B&Q, Screwfix, Brico Depot, Castorama and Koctas - to life. That's right, we're big, but we have ambitions to become even bigger and even better. We want to become the leading home improvement company and grow the largest community of home improvers in the world. And that's where you come in.

At Kingfisher our customers come from all walks of life, and so do we. We want to ensure that all colleagues, future colleagues, and applicants to Kingfisher are treated equally regardless of age, gender, marital or civil partnership status, colour, ethnic or national origin, culture, religious belief, philosophical belief, political opinion, disability, gender identity, gender expression or sexual orientation.

We are open to flexible and agile working, both of hours and location. Therefore, we offer colleagues a blend of working from home and our offices, located in London, Southampton & Yeovil. Talk to us about how we can best support you!

We are looking for a Machine Learning Engineers at Senior and Mid Level to join our growing team, to develop and deploy core ML/AI algorithms required to tackle data science challenges across Kingfisher Group. You will support data science projects from start to production, developing quality code and carrying out automated build and deployments, working closely with colleagues in the Data Science team as well as stakeholders across the business.

What's the job?

  • Develop high-quality machine learning models to solve business challenges
  • Develop production quality code and carry out basic automated builds and deployments
  • Write comprehensive, well written documentation that meets our needs
  • Identify work and dependencies, tracking progress through a set of tasks
  • Communicate clearly with colleagues and business stakeholders
  • Proactively share ideas with colleagues and accept suggestions
  • Ability to work on multiple data science projects and manage deliverables

What you'll bring

  • Solid understanding of computer science fundamentals, including data structures, algorithms, data modelling and software architecture
  • Solid understanding of classical Machine Learning algorithms (e.g. Logistic Regression, Random Forest, XGBoost, etc), state-of-the-art research area (e.g. NLP, Transfer Learning etc) and modern Deep Learning algorithms (e.g. BERT, LSTM, etc)
  • Solid knowledge of SQL and Python's ecosystem for data analysis (Jupyter, Pandas, Scikit Learn, Matplotlib, etc)
  • Understanding of model evaluation, data pre-processing techniques, such as standardisation, normalisation, and handling missing data
  • Solid understanding of summary, robust, and nonparametric statistics; hypothesis testing, probability distributions, sampling techniques, and stochastic processes

Be Customer Focused-constantly improving our customers' experience

  • I listen to my customers
  • I use available data to help make decisions

Be Human - acting with humanity and care

  • I do the right thing
  • I am respectful

Be Curious - thrive on learning, thinking beyond the obvious

  • I build and share new ideas
  • I try new things and share my learnings

Be Agile - working with trust, pace and agility

  • I have courage to be creative
  • Done is better than perfect, I aim for 80/20

Be Inclusive - acting inclusively in diverse teams to work together

  • I embrace allyship
  • I have self-awareness and a desire to learn

Be Accountable - championing the plan to deliver results and growth

  • I own my actions
  • I understand the Kingfisher plan and how it relates to my role

At Kingfisher, we value the perspectives that any new team members bring, and we want to hear from you. We encourage you to apply for one of our roles even if you do not feel you meet 100% of the requirements.

In return, we offer an inclusive environment, where what you can achieve is limited only by your imagination! We encourage new ideas, actively support experimentation, and strive to build an environment where everyone can be their best self. Find out more about Diversity & Inclusion at Kingfisher here!

We also offer a competitive benefits package and plenty of opportunities to stretch and grow your career.

Interested? Great, apply now and help us to Power the Possible.

#LI-TB1
#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.