National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer Language

Amazon
Nottingham
5 days ago
Create job alert

DESCRIPTION The Generative AI Innovation Center at AWS helps AWS customers accelerate the use of Generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers to build bespoke solutions that harness the power of generative AI. As an ML Engineer, you'll partner with technology and business teams to build solutions that surprise and delight our customers. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. We're looking for Engineers and Architects capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Collaborate with ML scientist and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver reusable technical assets that help to accelerate the adoption of generative AI on AWS platform - Provide customer and market feedback to Product and Engineering teams to help define product direction. Generative AI Innovation Center is a program that pairs you with AWS science and strategy experts with deep experience in AI/ML and generative AI techniques to: - Imagine new applications of generative AI to address your needs. - Integrate Generative AI into your existing applications and workflows. AWS values diverse experiences. Why AWS? Amazon Web Services (AWS) is the world's most comprehensive and broadly adopted cloud platform. Here at AWS, it's in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We're continuously raising our performance bar as we strive to become Earth's Best Employer. That's why you'll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. Bachelor's degree in computer science or equivalent - Experience in professional, non-internship software development - Experience coding in Python, R, Matlab, Java or other modern programming language - Several years of relevant experience in developing and deploying large scale machine learning or deep learning models and/or systems into production, including batch and real-time data processing, model containerization, CI/CD pipelines, API development, model training and productionizing ML models - Masters or PhD degree in computer science, or related technical, math, or scientific field - Proven knowledge of deep learning and experience using Python and frameworks such as Pytorch, TensorFlow - Proven knowledge of Generative AI and hands-on experience of building applications with large foundation models Experiences related to AWS services such as SageMaker, EMR, S3, DynamoDB and EC2, hands-on experience of building ML solutions on AWS - Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult our Privacy Notice ( to know more about how we collect, use and transfer the personal data of our candidates. Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit for more information.

Related Jobs

View all jobs

Machine Learning Engineer Language

Machine Learning Engineer Language

Machine Learning Engineer Language

Machine Learning Engineer Language

Machine Learning Engineer Language

Machine Learning Engineer Language

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.