Machine Learning Engineer Institute of Computation / 05 March 2025

Tbwa Chiat/Day Inc
Cambridge
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

Diversity at Altos

We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

What You Will Contribute To Altos

Altos Labs is building high-performance, scalable, quantitative solutions for biomedical image analysis and integration with multi-Omics data. The team works at multiple scales including data from Electron/Light Microscopy, Digital Histology and Pathology up to functional analysis In Vivo. We will enable and accelerate the Altos mission by leveraging state of the art computer vision and machine learning, and collaborating with MLOps at Altos to make all our models easily trainable, findable, interpretable, and accessible across diverse research groups.

Responsibilities

  • Evaluate state of the art and retrain AI models across the full spectrum of imaging including: de novo protein design, structure identification and dynamics in single particle CryoEM; light microscopy and multi-omics data integration and cross domain mapping of data collected in situ and in vivo.
  • Demonstrate software engineering skills to develop reliable, scalable, performant distributed systems in a cloud environment.
  • Develop efficient data loading strategy and performance tracking to train large models with distributed training across multiple nodes.
  • Build, deploy, and manage multi-modal analysis pipelines for scientific analysis, and machine learning workflows in an integrated, usable framework.
  • Understand scientists' needs across a wide range of scientific disciplines by collaborating with both users and software engineers.
  • Bridge the communication gap between experimental scientists, algorithm developers and software deployers.

Who You AreMinimum Qualifications

  • BS/MS in Computer Science/Biomedical Engineering or related quantitative field.
  • Candidates should have relevant industry and/or academic experience.
  • Experience with one or more programming languages commonly used for large-scale data management and machine learning, such as Python, C++, Pytorch/Tensorflow, Pytorch Lightning etc.
  • Previous experience with Machine Learning at scale: Large Language Models and Self-Supervised/Contrastive/Representation Learning for Computer Vision applications and multi-modal integration.
  • Experience applying software engineering practices in a scientific environment, or another environment with similar characteristics.
  • Demonstrated track record of hands-on technical leadership and scientific contributions such as papers or conference communications.
  • Excited to design and implement technical and cultural standards across scientific and technical functions.

Preferred Qualifications

  • Bioinformatics data processing and analysis.
  • Experience with cloud computing and containerization.
  • Knowledge of genetics/human genetics.

The salary range forCambridge, UK:

Exact compensation may vary based on skills, experience, and location.

What We Want You To Know

We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.