Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer II

Zonda
Glasgow
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer II, Marketing Testing

Machine Learning Engineer II, Marketing Testing

Machine Learning Engineer III

Machine Learning Ops Engineer III

Machine Learning Ops Engineer III

Software Engineer II, Applied Machine Learning

Machine Learning Engineer (NLP) II

Remote | UK | Full Time

The ML Engineer (Natural Language Processing) II is a mid-level position responsible for Natural Language models-based product development and maintenance. As a mid-level engineer in this role, you will work closely with senior engineers and non-technical business stake holders, contributing to the entire lifecycle of building and maintaining emerging LLM/NLP-based ML products. An important aspect of this role would be product design and execution bearing cost efficiency and speed. The ideal candidate would have skills in software programming, ML, agentic workflows, mathematics, and DevOps. Good communication skills with an ability to demystify ML algorithms and capabilities is a must, as stakeholders in ML products include software engineering teams as well as non-technical business partners.

What You'll Do

Curation, cleaning, and maintenance of datasets for NLP/LLM models. Develop, optimise, and deploy NLP/LLM models. Work with agentic frameworks like LangChain, CrewAI, or AutoGen to develop multi[1]step agents or workflows Work with Product stakeholders to capture and establish requirements for natural language models-based products. Collaborate with Product Managers, software engineering teams, and other departments to design NLP products for inference. Steer consolidation of dataset requirements, acquiring data, annotation, management, and version control for NLP applications. Monitor ML models in production, setting metrics to identify drift, and establish corrective measures for restoring model performance. Identify and implement appropriate tools for monitoring product performance in inference. Ownership of technical documentation related to datasets, model selection, training experiments, and production infrastructure. Continual learning and self-improvement with a focus on latest trends, techniques, and best practices in Machine Learning.

Who You Are

Bachelor's degree in computer science, Engineering, or a related field. 3+ years of experience in Machine Learning, Data Science, or a related field. Proficient in Python and working knowledge of ML libraries PyTorch and scikit-learn. You’ve built and deployed at least one LLM-based or NLP-heavy product in a real setting likely using agentic frameworks like LangGraph, LangChain, AutoGen etc. Strong mathematical, analytical, and problem-solving skills. Experience with retrieval systems, embeddings, and vector DBs like Weaviate or Pinecone. Good understanding of Machine Learning algorithms and models (Language processing models such as GPT, BERT, etc). Experience in designing ML products for inference in cloud. Ability to structure and execute an ML project from start to completion, for both training and inference. Excellent communication and teamwork skills; ability to work in a team. Experience with cloud computing platforms like AWS, Google Cloud, or Azure. Familiarity with containerization and orchestration tools like Docker and Kubernetes. Experience with version control systems like Git.

Nice to have.

Masters in a specific field such as Statistics, Data Science, Machine Learning, or AI. Utilization of Generative AI models. Knowledge of SQL and NoSQL databases including construction of queries, query optimization, and schema design. API development using standard tools such as FastAPI or Flask

Administrative 

The candidate must have the right to work in UK

Why People Love Working Here 

We offer meaningful work and opportunities for career growth Competitive Salary Comprehensive benefit package (Medical, Dental, Vision) Paid vacation and general holidays Education Allowance Employee & Family Assistance Program (EFAP)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.